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Chapter 1

Introduction

In 1932 James Chadwick discovered the neutron [1, 2], which is the second building
block of the atomic nucleus next to the proton. Later the same year Werner Heisen-
berg introduced the concept of isospin [3, 4, 5] which suggests that the neutron and
proton can be described as two different states of the same particle, the nucleon.
Heisenberg proposed a neutron-proton interaction which, besides from a phenomeno-
logical spatial part, also depends on spin and isospin of the two particles. This is
very much alike the approach as in modern nuclear physics today. It is reasonable,
although not completely justified, to require that a nucleon-nucleon potential is ro-
tation invariant in isospin space in the same way as it must be rotation invariant in
ordinary space. This immediately implies that the nuclear force is charge indepen-
dent and that the isospin symmetric neutron-neutron and proton-proton systems are
synonymous. However, the Coulomb interaction between protons clearly breaks this
symmetry. An additional contribution arises from the mass difference of neutrons
and protons. In principal, the most straightforward way to experimentally study
the breaking of isospin symmetry would then be to study two-nucleon systems. The
problem however, is that the only bound two-nucleon system is the deuteron, 2H.
Both the neutron-neutron system and 2He are unbound. Although the opposite
would be great from isospin studies we should be pleased with the fact that 2He
is unbound. Otherwise the p-p burning process in the interior of stars, including
our sun, would proceed much faster and the evolution would probably not have had
time enough to develop even the simplest forms of life. However, we can still learn
something about isospin from 2H. The only bound state of 2H is isospin asymmetric.
The absence of isospin symmetric states tells us that the nucleon-nucleon potential
indeed is isospin dependent and that it seems to favour isospin asymmetric systems.
Isospin symmetry breaking can be studied in heavier nuclear systems. This is in-
teresting because Coulomb effects are more pronounced in heavier nuclei since more
protons are present. Especially interesting to study are pairs of mirror nuclei, which
have the number of protons and neutrons interchanged. The difference in level
energies of excited states in these nuclei turns out to be very sensitive to which
configurations that are involved. To form nuclear states with increasing spin the
valence particles align their spin towards the same direction. To determine which
particles that take part in the spin alignment the study of mirror nuclei will help
us. In nuclei from 40Ca to 56Ni the valence particles are mainly occupying the same
shell, namely the 1f7/2 shell. The 1f7/2 shell is relatively isolated in energy and
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CHAPTER 1. INTRODUCTION 2

situated between the 1d3/2 shell and the upper fp shell, consisting of the 2p3/2, 1f5/2

and 2p1/2 shells. Therefore, we expect that the wave functions of nuclear states in
this region are dominated by 1f7/2 particle configurations which makes results from
mirror symmetry studies easier to interpret. Recently, extensive studies have been
performed on mirror nuclei in this shell including the A = 47 [6] and A = 49 [6, 7]
Tz = ±1/2 nuclei and the A = 46 [8] and A = 50 [9, 10] T = 1 isobaric triplets. A
few excited mirror states are known for A = 53 [11] and A = 55 [12]. Along with
the experimental advances it is now also possible to perform large-scale shell-model
calculations up to A = 52 [13]. Thus to reproduce Coulomb effects in 1f7/2 mirror
nuclei is really a test for the nuclear shell model.
This thesis focuses on the A = 51 mirror nuclei. This is the heaviest mirror system
for which extensive studies have been performed. It is based on the following pub-
lications:

1. The A = 51 Mirror Nuclei 51Fe and 51Mn

J. Ekman, D. Rudolph, C. Fahlander, R.J. Charity, W. Reviol, D.G. Sarantites,
V. Tomov, R.M. Clark, M. Cromaz, P. Fallon, A.O. Macchiavelli, M. Carpenter,
and D. Seweryniak,
Eur. Phys. J. A 9, 13 (2000).

2. The A = 51 Mirror Nuclei 51Fe and 51Mn

J. Ekman, D. Rudolph, C. Fahlander, R.J. Charity, W. Reviol, D.G. Sarantites,
V. Tomov, R.M. Clark, M. Cromaz, P. Fallon, A.O. Macchiavelli, M. Carpenter,
and D. Seweryniak,
Proceedings Pingst 2000, Selected Topics on N = Z Nuclei, June 2000, Lund,
Sweden, Eds. D. Rudolph and M. Hellström, Bloms i Lund AB, p. 232.



Chapter 2

Theoretical Background

2.1 The Shell Model

The atomic nucleus is built up by protons and neutrons, referred to as nucleons,
which form a quantal many-body system. Nucleons are fermions, that is they are
spin 1/2- particles and therefore must obey the Pauli principle. Empirically we know
that nuclei exhibit a shell structure in a similar way as atoms. One experimental
evidence of this is that the two-neutron separation energies show discontinuities at
certain neutron numbers, namely at 2, 8, 20, 28, 50, 82, and 126. These numbers
are the so-called magic numbers.
A natural starting point for a theoretical model to understand this behaviour is to
solve the Schrödinger equation with the Hamiltonian for an A-particle system

H =
A
∑

i=1

(

− h̄2

2m
∇2

i

)

+
1

2

A
∑

i6=j

v(~ri, ~rj) (2.1)

The left term in the Hamiltonian describes the kinetic energy of the nucleons. The
right term describes the interaction between all nucleons in the nucleus. The total
wave function of the system is then the product of the single-particle wave functions,
properly normalised and antisymmetrised. The facts that we are dealing with a
finite many-body system, and that the interaction between the particles is not fully
understood make things complicated. To avoid these problems we approximate
the nuclear interaction term in Eq. 2.1 with an average central potential. This
average potential is chosen such that any residual interaction required to describe
the nucleus is minimised. Since the nuclear force is a short-range interaction, the
central potential is, to a first approximation, proportional to the density distribution
of the nucleus. The latter is well known for a wide range of stable nuclei from electron
scattering experiments. One central potential that is often used is the Woods-Saxon
potential

VWS(r) =
−V0

1 + e
r−R

a

(2.2)

where the well depth V0 is of the order of 50 MeV, R is the nuclear radius given by
R = R0A

1/3 fm (R0 ≈ 1.25 fm), and A is the mass number of the nucleus. The skin
diffuseness is represented by the parameter a, which is approximately 0.55 fm.
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CHAPTER 2. THEORETICAL BACKGROUND 4

(a) (b)

Figure 2.1: Single-particle energies calculated with a Woods-Saxon potential without
spin-orbit coupling (a) and with spin-orbit coupling (b). The degeneracy of each
level and the cumulate number of nucleons up to that level is shown to the right of
each figure. Numbers in circles are the magic numbers. Picture taken from Ref. [14].

The Schrödinger equation for such a central potential can be separated into a radial
part and an angular part. The solution of the angular part is independent of the
central potential. To solve it, a quantum number l is introduced, which is related
to the orbital angular momentum ~l as ~l2|ψ〉 = l(l+ 1)h̄2|ψ〉, where |ψ〉 is the single-
particle wave function. The l quantum-number can only take integer values and is
often denoted as s, p, d, f, g, etc. corresponding to l = 0, 1, 2, 3, 4, etc. Another
important quantum-number is the parity π, which reflects the symmetry of the wave
function when the signs of the spatial coordinates are interchanged. A state with
an even l-value has positive parity, and a state with odd l has negative parity. The
orbital angular momentum vector has different directions in space with respect to
the quantisation axis z, and the projection of ~l on the z-axis is given by lz|ψ〉 =
mlh̄|ψ〉, where ml can take values l, l − 1, .., l = 0, ..,−l + 1,−l. Nucleons also
have intrinsic spin ~s, and the projection on the z-axis is given by sz|ψ〉 = msh̄|ψ〉,
where ms = ±1/2. The degeneracy of a state, i.e., the number of particles that
can occupy a state with a given energy, is 2(2l + 1), where the factor 2 comes from
the two directions that the intrinsic spin can take. Another quantum number is
the principal quantum number n, which is the number of nodes the radial wave
function has. The energy eigenvalues obtained when solving the Hamiltonian with
a Woods-Saxon potential can be seen in Fig. 2.1(a); A Woods-Saxon potential alone
does not reproduce the observed magic numbers beyond 20. To solve this problem it
is necessary to add the so-called spin-orbit interaction. The modified Woods-Saxon
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potential can then be expressed as

VMWS(r) =
−V0

1 + e
r−R

a

+ VSO(r)~l · ~s (2.3)

The last term in the equation, the spin-orbit interaction, couples the orbital angular
momentum ~l to the intrinsic spin ~s to form a total angular momentum (or spin)
~j. Similar to ~l, ~j is associated with quantum numbers j and mj = ml + ms. A
consequence of the spin-orbit interaction is that it splits the degeneracy of each l > 0
level into a j = l+1/2 and a j = l−1/2 level in such a way that the j = l+1/2 level
is lowered in energy. The energy levels calculated with the modified Woods-Saxon
potential are shown in Fig. 2.1(b). Levels are denoted as nlj. The degeneracy for
each level becomes 2j + 1 and we see from the figure that the experimental magic
numbers are well reproduced. For a more detailed description on the spherical shell
model, see for instance Refs. [14, 15].
Using Fig. 2.1(b) we can also predict spins and parities of the ground states of nuclei.
Neutrons and protons are treated separately. The fact that two like particles tend
to couple to spin zero in ground states, due to the so-called pairing interaction,
simplifies things. It implies that all even-even nuclei (even number of protons and
neutrons) have spin zero ground states, which is observed experimentally. The total
parity of a nucleus is the product of the single-particle parities, and thus the total
spin and parity Iπ of an even-even nucleus is 0+. For odd-even nuclei the spin and
parity is determined by the last odd particle. One example is 43Ca where we from
Fig. 2.1(b) would infer that the ground-state spin and parity is 7/2−, which is also
observed experimentally. For odd-odd nuclei, the situation is more complicated since
both the last odd proton and neutron contribute with non-zero spin. Therefore, we
must couple the spin of the neutron jn with the spin of the proton jp to a total spin
I. This coupling obeys the following general rule

|jp − jn| ≤ I ≤ |jp + jn| (2.4)

As an example, for 42Sc, with one proton and one neutron in the f7/2 orbit, the
total spin can be I = 0, 1, 2, 3, 4, 5, 6 and, 7. The total parity however is positive.
Experimentally the spin and parity of the ground state of 42Sc is 0+.
These simple rules do not work for all nuclei. For example, if we would like to predict
the ground state spin and parity for 51Mn, an odd-even nucleus, we would predict
7/2−, as in the case of 43Ca. However, the spin and parity for 51Mn is experimentally
found to be 5/2−. This discrepancy tells us that the simple spherical shell model
does not work for all nuclei. Could it be that 51Mn is not spherical in its ground
state?
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2.2 The Nilsson Model

Although the spherical shell-model has earned a lot of success in describing low-spin
states in spherical nuclei, it fails to describe phenomena in the vast majority of
nuclei. We find spherical nuclei in the direct vicinity of double-magic nuclei (both
proton and neutron number are magic). Examples are 40Ca (N = Z = 20) and 56Ni
(N = Z = 28). But in a lot of nuclei with many valence particles outside closed
shells we observe signatures of deformation.
To understand the fundamental issues of single particles moving in a deformed nu-
cleus, a deformed shell model was developed by S. G. Nilsson in 1955 [16], generally
known as the Nilsson model, which will be discussed briefly below. For a more de-
tailed discussion, see Ref. [17].
To model a single particle moving in a deformed nucleus the Deformed Modified-
Oscillator (DMO) potential is often used.

VDMO =
1

2
M(ω2

zz
2 + ω2

⊥(x2 + y2)) − 2κh̄ω0(~l · ~s) − κµh̄ω0(~l
2 − 〈~l2〉N) (2.5)

The first term describes the deformation. ωz and ω⊥ are the harmonic oscillator
frequencies in the z-direction and the directions perpendicular to the z-direction,
respectively. It is an axially symmetric term with two axis equal, ω⊥ = ωx = ωy.
For prolate shapes (American football like shape), which we are going to focus on,
ωz < ω⊥. We define a deformation parameter δ as

δ = 3
ω⊥ − ωz

2ω⊥ + ωz

(2.6)

The second term in Eq. 2.5 is the spin-orbit coupling described above. The third
term lowers the energy of high-l states to simulate the effect of a potential with
surface, for example the Woods-Saxon potential in Eq. 2.2. The parameters κ and
µ are determined empirically.
The Schrödinger equation with the DMO potential can be solved in two limits. In
the first case it is assumed that the deformation term is small compared to the
spin-orbit term. We can then treat the deformation as a perturbation. In this
case one-particle states may be approximately described by the spherical quantum-
numbers nlj and a good quantum-number Ω, which is the projection of the total
angular momentum on the symmetry axis (z-axis).
In the second case we assume that the deformation term is much larger compared to
the spin-orbit term. We can then treat the spin-orbit term as a perturbation. The
good quantum numbers in the large deformation limit are N = n

z
+n⊥, nz

, Λ and Ω.
nz and n⊥ are the number of nodes the wave function takes in the z-direction and
the perpendicular directions, respectively. Λ is the projection of the orbital angular
momentum on the symmetry axis. These quantum numbers are often referred to
as the asymptotic quantum numbers. The parity of a state is given by π = (−1)N .
Therefore parity is also a good quantum number.
For intermediate values of the deformation the situation is more complicated, since
the spin-orbit term mixes levels with different values of n

z
, n⊥, and Λ. However, we

still use the asymptotic quantum-numbers to describe single-particle orbits. To solve
this eigenvalue problem we must carry out the diagonalisation of the Hamiltonian
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Figure 2.2: Nilsson diagram for protons Z or neutrons N , Z,N ≤ 50. The deforma-
tion parameter ǫ2 = δ. Orbits are labelled Ω[NnzΛ]. Solid (dashed) lines indicate
positive (negative) parity states.

with the potential in Eq. 2.5. The result is a Nilsson diagram shown in Fig. 2.2.
Due to the axial symmetry of the potential used, there is no way to differ between
orbits having for example Ω = 3/2 and Ω = −3/2 and each level is therefore two-fold
degenerate. The projection of the total angular momentum on the symmetry axis
is given by

K =
A
∑

i=1

Ωi (2.7)

It is now possible to predict spin and parity of the ground state in deformed nuclei,
for example in 51Mn. We simply place two neutrons in each state up to N = 26
and two protons in each state up to Z = 24. By doing this we end up with a single
proton in the Ω[NnzΛ] = 5/2[312] orbit, as long as the ground-state deformation is
moderate (δ ≤ 0.3). The spin and parity of the ground state in 51Mn is predicted
to be Iπ = Kπ = 5/2−. Experimentally we find that Iπ = 5/2− and a deformation
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δ ≈ 0.2. The Nilsson model describes single-particle motion in deformed nuclei very
well.

2.3 Coulomb Effects and Mirror Symmetry

The decisive force in atomic nuclei is the strong nuclear force. However, this is
not the only force acting on the nucleons. Since the protons are positively charged
the Coulomb force must also be considered. However, if we neglect the Coulomb
interaction, the observed properties of neutrons and protons are expected to be very
similar. We can then treat the proton and the neutron as being different states of the
same particle. Therefore, it is convenient to introduce a quantum number describing
these states, namely the isospin quantum-number t. A nucleon has t = 1/2 and two
possible directions in isospin-space, tz = +1/2 and tz = −1/2, corresponding to a
neutron and a proton, respectively. The total isospin projection in a nucleus Tz is
given by Tz = 1

2
(N − Z). Mirror nuclei are a pair of nuclei where the number of

protons and neutrons are interchanged. One example is 51Fe and 51Mn, which this
thesis focuses on. 51Fe has 26 protons and 25 neutrons and Tz = −1/2, whereas
51Mn has 25 protons and 26 neutrons and Tz = +1/2.
The Coulomb interaction between two protons can be expressed as

VC =
e2

R
(2.8)

where e is the charge of the protons and R is the distance between them. To describe
the proton single-particle energies, a potential like Eq. 2.8 is often added to a realistic
nuclear potential (Eq. 2.3). Coulomb interaction also affects the binding energy and
mass of nuclei. The Coulomb energy stored in an uniformly charged sphere, with a
total charge Z and radius Rc, can be expressed as

EC =
3

5

Z2e2

RC

(2.9)

If we assume the strong nuclear force to be charge independent, the difference
in binding energy of mirror nuclei must equal the difference in Coulomb energy.
This Coulomb-energy difference is also known as the Coulomb Displacement Energy
(CDE). Since the Coulomb interaction of each proton with itself is already included
in the mass of the proton, we must exchange Z2 with Z(Z − 1) in Eq. 2.9. CDE for
Tz = ±1/2 mirror nuclei becomes

CDE =
3

5

e2

RC

(2Z − 2) (2.10)

If we compare the result from Eq. 2.10 with experimental values, we will find that
the CDE is overestimated with about 10%, assuming RC = R0A

1/3 and R0 = 1.22
fm. This discrepancy is due to skin diffuseness and shell effects, which are not
considered in Eq. 2.10. A more realistic expression for the Coulomb energy stored
in nuclei is given in Ref. [17] page 16.

EC =
3

5

Z(Z − 1)e2

RC

(

1 − 5π2

6

(

a

Rc

)2

− 0.76

Z2/3

)

(2.11)
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Figure 2.3: Experimental CDE:s compared to CDE:s calculated with Eq. 2.11 for
Tz = ±1/2 mirror nuclei in the 1f7/2 shell. See text for details.

The second term in the parenthesis is the correction introduced when integrating
over a charge distribution with skin diffuseness parameter a (cf Eq. 2.2). The third
term, the so-called exchange correction, takes the Pauli principle into consideration.
This means that the immediate vicinity of one proton is a forbidden volume for
other protons. It is calculated assuming a two-particle density function for the
protons. In Fig. 2.3 we compare the CDE:s calculated with Eq. 2.11 using R0 = 1.22
fm and a = 0.55 fm, to experimental CDE:s for Tz = ±1/2 mirror nuclei in the
1f7/2 shell. We now instead underestimate CDE with about 10%. This is the so
called Nolen-Schiffer anomaly [18]. Even when using refined mean-field calculations
the anomaly remains. However, recently, claims have been put forward that the
problem can be solved without destroying the charge independence of the nuclear
force [19]. Instead, a small neutron skin is introduced to get consistency between
experimentally observed proton radii and CDE:s.

So far we have only studied Coulomb-energy differences of ground states in mir-
ror nuclei. It is even more interesting to study Coulomb effects of excited states.
Theoretically, this cannot be done using a simple model, but we can still learn
a lot by studying experimental level schemes. We first determine the difference
in level energies of mirror nuclei, i.e., the level energies of the proton-richer part-
ner minus the respective level energies of the neutron-richer partner. Plotted as a
function of angular momentum, we obtain the so-called Coulomb Energy Difference
(CED)-diagram. Under the assumption that the nuclear force is charge indepen-
dent, the CED-diagrams should reflect the expectation values of the Coulomb in-
teraction for the particle configurations involved. Figure 2.4(a) shows level schemes
and Fig. 2.4(b) shows the CED-diagram for the Tz = ±1 mirror nuclei 42

22Ti and
42
20Ca. In the ground state they have two protons and two neutrons in the f7/2-shell
outside the doubly-magic 40

20Ca, respectively. The maximum spin that can be cre-
ated in these configurations is I = 6, which corresponds to the full alignment of the
proton and neutron pair, respectively. When we break and align the proton pair in
42
22Ti, the average distance between the protons increases. This leads to an increase
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Figure 2.4: Experimental level schemes(a) and corresponding CED-diagram(b) for
the Tz = ±1 mirror nuclei 42Ti and 42Ca.

in binding energy due to the decrease in Coulomb energy. In 42
20Ca we do not expect

such an effect, since we break and align a pair of neutrons. The net effect should be
that the CED decreases with increasing spin, which is also what we observe, except
for the increase in CED for the I = 2 level.



Chapter 3

Experimental Techniques

3.1 Fusion-Evaporation Reactions

To study high-spin properties in nuclei, it is necessary to use a reaction that gen-
erates sufficient angular momentum and excitation energy. A common way to pro-
duce high-spin states in N ≈ Z nuclei is by using a heavy-ion compound fusion-
evaporation reaction. The fusion-evaporation reaction is a multi-step process schemat-
ically shown in Fig. 3.1. The projectile nucleus and the target nucleus fuse into a
very hot and fast rotating system. It forms a highly excited compound nucleus with
the excitation energy E∗ expressed as.

E∗ = Q+ ECM (3.1)

Q is the Q value of the reaction and ECM is the center-of-mass energy available for
excitation given by

ECM = Tp
Mt

Mp +Mt
(3.2)

Tp is the beam energy and Mp and Mt are the masses of the projectile nucleus and
the target nucleus, respectively. The maximum angular momentum Lmax that can
be given to the compound nucleus is

Lmax =
Mt

Mp +Mt

· bmax ·
√

2Mp(Tp − EC) (3.3)

where bmax is the maximum impact parameter which generates such a reaction. It
can be estimated by

bmax = Rp +Rt = R0(A
1/3

p + A
1/3

t ) (3.4)

Rp and Ap (Rt and At) are the radius and the mass number of the beam nucleus
(target nucleus). We note that the angular momentum of the compound nucleus
can take any value between 0 and Lmax, depending on the impact parameter b. To a
first approximation, the probability for a certain angular momentum is proportional
to b. Since the projectile nucleus and target nucleus are positively charged, ECM

must be larger than the Coulomb barrier EC which is given by

11
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Figure 3.1: Formation and decay of compound nucleus. Taken from Ref. [20].

EC = 1.44
ZpZt

RC

(3.5)

where Zp and Zt are the proton numbers of the beam nucleus and target nucleus,
respectively. RC is the distance in fm between the target nucleus and projectile
nucleus, where the maximal Coulomb barrier is expected, which means RC = bmax.
As seen in Fig. 3.1, instead of forming a compound nucleus, the fused system may
also undergo fast fission. The fission probability depends essentially on how much
angular momentum that has been put into the system.

Initially the compound nucleus cools down by evaporating particles, such as neu-
trons, protons, and α particles (see also Fig. 3.2). This is an efficient cooling process
since the evaporated particles take away both binding energy and kinetic energy
from the system; α particles take away ∼15 MeV kinetic energy, protons ∼10 MeV
and neutrons ∼2 MeV. The evaporated particles also take away angular momentum
from the system; α particles ∼5-10 h̄ and protons and neutrons ∼1-2 h̄. In the mass
A ∼ 60 region, protons and α particles are much more likely to be evaporated than
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Figure 3.2: Decay of a compound nucleus down to the ground state of a residual
nucleus. The excitation energy is plotted vs. angular momentum.

neutrons. This is mainly due to the higher neutron separation energy of ∼ 15 MeV,
compared to the proton separation-energy of ∼ 5 MeV. The number and combina-
tion of particles evaporated in each event defines the reaction channel and thus the
residual nucleus. Typically a fusion-evaporation reaction in the mass A ∼ 60 region
opens up ∼20 reaction channels with varying cross sections from tens of µb up to
100 mb. Eventually the evaporation of particles is no longer energetically possible,
which happens at about 8 MeV above the yrast line1. Instead the residual nucleus
cools down by emitting statistical γ-rays. Finally the residual nucleus decays by
emitting discrete γ rays to the ground state. These γ rays carry the information of
the structure of the nucleus.
This work is based on data from fusion-evaporation reactions using a 125 MeV 32S
beam on a 28Si target, giving the compound nucleus 60Zn. The Q value for this
reaction is 6.67 MeV and using Eq. 3.2 we get ECM ∼ 58 MeV. The excitation
energy of the compound nucleus then becomes ∼ 65 MeV. Using R0=1.25 fm and
bmax=7.76 fm we get Lmax ∼ 41 h̄.

3.2 Gamma-Ray Detectors

It is necessary to have an efficient γ-ray detection device when studying fusion-
evaporation reactions. Since we populate the residual nucleus at high excitation
energy, the number of γ rays emitted from one event, the γ-ray multiplicity, can

1From the Swedish “yrast”, in English “the most dizzy, dizziest”. Refers to the line connecting
states with lowest possible energy for a given spin.
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be large. In the mass A ∼ 60 region at E∗ ∼ 60 MeV the γ-ray multiplicity is
∼ 15. This requires that the detection system also has a high energy resolution.
High-Purity Germanium(HPGe)-detectors offer extremely good energy resolution
(∼2.0-2.5 keV at 1.33 MeV γ-ray energy). To obtain high detection efficiency and
granularity it is necessary to use many Ge detectors coupled together in arrays. The
two most powerful Ge arrays currently existing are Euroball [21], which is a joint
European project and currently located at Institute de Recherches Subatomiques
(IReS) in Strasbourg, France, and Gammasphere [22] at the Lawrence Berkeley
National Laboratory (LBNL) in Berkeley, U.S.A. This work is based on data from
experiments using Gammasphere.
A photo of Gammasphere is shown in Fig. 3.3. It consists of up to 110 Ge-detectors
packed in a 4π geometry. The Ge detectors are mounted in 17 rings situated between
17.3◦ to 162.7◦ with respect to the beam axis. The front faces of the Ge-detectors are
25 cm from the target location. With this geometry the total photo-peak efficiency is
∼ 9% and the energy resolution is 2.4 keV at 1.33 MeV. For γ energies between 200-
1200 keV the Compton-scattering process is the dominating interaction in the Ge
crystals. Therefore, γ rays often undergo multiple Compton scattering and escape
from the Ge detector thus depositing only part of their energy. This leads to an
undesired background. To suppress this background, each Ge detector is surrounded
by a shield of BGO crystals 2. Whenever a γ ray is scattered from the Ge crystal and
detected in the BGO shield, it is vetoed and not considered anymore. In this way
the ratio of photo-peak events to the total number of events (peak-to-total ratio) is
considerably increased. Since the BGO shield is primarily used as a veto detector,
the poor energy resolution of BGO does not play a role, but the high efficiency
certainly does. If the γ-ray multiplicity is too high, there is a possibility to have
γ rays impinging at the BGO shield and the Ge crystal at the same time. In such
situations the BGO shield may veto a “good” Ge event. To prevent this, Heavimet3

absorbers are usually placed in front of the BGO shields. In reactions with low γ-ray
multiplicity the Heavimet absorbers can be removed, allowing for γ-ray multiplicity
and sum-energy measurements, which are discussed in chapter 4.3.1.
The energy resolution for Gammasphere given above is the typical, averaged intrinsic
energy resolution of the system obtained if the γ-emitting source is at rest. In
fusion-evaporation reactions using thin targets and no backing material to stop the
recoiling nuclei, we have to consider kinematical Doppler effects. This will worsen
the energy resolution, but can to a large extent be corrected for using an event-by-
event reconstruction method described in chapter 4.2.5.
In the two experiments which this work is based on the linear accelerator at Argonne
National Laboratory (ANL) in Argonne, U.S.A. and the 88-inch cyclotron at LBNL
provided the 32S beam. Both accelerators are operated in pulsed beam mode. The
time between pulses for the 88-inch cyclotron was 80 ns. This provides a time
calibration for the Ge time spectra as well as a time reference for pulse shape analysis
techniques, see chapter 4.2.2.

2Bi4Ge3O12

3A Ta-Ni-Cu alloy with a density of ≈19 g/cm3
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Figure 3.3: One hemisphere of Gammasphere (GS) together with Neutron Shell
(NS) and Microball (MB), mounted inside the target chamber. The beam is coming
from the right in the picture. Taken from Ref. [23].

3.3 Ancillary Detectors

As stated above fusion-evaporation reactions open up a lot of reaction channels with
varying cross sections. As a consequence a raw ungated Ge-spectrum contains a huge
amount of γ-ray transitions from many different residual nuclei. This is a problem,
especially in the search for nuclei populated in very weak reaction channels. To solve
this problem we detect the evaporated particles in coincidence with the emitted γ
rays. This provides much cleaner spectra and also the possibility to identify γ-ray
transitions of a specific residual nucleus. To detect the evaporated particles, different
ancillary detectors can be operated together with Gammasphere. Two of them will
be discussed below, namely Microball [24], used for the detection of evaporated light
charged particles, and the Neutron Shell [25], used for the detection of evaporated
neutrons.

3.3.1 Microball

Microball is situated inside Gammasphere, see Fig. 3.3. It has a large solid angle
coverage and provides good particle identification. It also has a small mass to min-
imise absorption of the γ rays. A high segmentation is also important not to allow
too high count rates in individual detectors. To perform sum-energy measurements
and charged-particle spectroscopy a good energy resolution is also required.
Microball consists of 95 closely packed CsI(Tl) scintillators, covering 97% of the
solid angle. The scintillators are mounted in 9 rings covering the angles from 4◦ to
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171◦ with respect to the beam axis. Due to the reaction kinematics the evaporated
particles are focused at forward angles. Therefore, the most forward rings of Mi-
croball are placed at larger distances from the target to reduce count rates because
of increased granularity. The target-to-detector distance varies from 45-50 mm in
the backward and mid angles up to 110 mm in the most forward ring. The intrinsic
energy resolution is 240 keV for 8.78 MeV α particles. The front surface of each
detector is covered by Pb or Sn absorber foils in order to stop elastically scattered
beam particles.

3.3.2 Neutron Shell

The most proton rich nuclei are populated in reaction channels involving evaporated
neutrons. When we produce mirror nuclei, the Tz = −1/2 partner is always pop-
ulated in a neutron channel, assuming stable N = Z target and N = Z projectile
combinations. Therefore we are often interested in detecting and identifying the
evaporated neutrons.
The detection of neutrons is, however, more complicated than the detection of
charged particles. This is due to the different interaction mechanism involved when
the particles are passing through matter. Charged particles interact mainly through
electro magnetic processes and interactions take place continuously along the tracks.
Since neutrons are neutral the dominating interacting with matter in the MeV region
is through nuclear scattering. The recoil nucleus then interacts electromagnetically
and can be detected. To have neutrons transfer as much energy as possible, a
hydrogen-rich material is often used as detector material. From a detection point of
view, there are several problems associated with neutron scattering. First of all, the
nuclear interactions take place rarely, and therefore many and large detectors are
often used. This also means that with some probability a neutron is scattered from
one detector to adjacent detectors. As a consequence, false two-neutron events are
common. For a description on how these events can be suppressed, see chapter 4.2.3
and Ref. [26].
The Neutron Shell, shown in Fig. 3.3, consists of 30 hexagonal liquid scintillators.
When operated together with Gammasphere it replaces the four most forward Ge
rings and covers ∼25% of the solid angle. The scintillators are covered with 8mm
Pb absorbers to absorb low-energy γ rays. These are harder to discriminate from
neutrons than γ rays with higher energies.
Since all the charged particles are stopped in either Microball or in the target cham-
ber, the main issue is to discriminate neutrons from γ rays. Similar to Microball,
pulse-shape-analysis techniques are used and the discrimination procedure is de-
scribed in detail in chapter 4.2.2.



Chapter 4

Data Handling

Fusion-evaporation reactions using Gammasphere in conjunction with Microball and
the Neutron Shell are associated with a enormous amount of data signals. A certain
fraction of this data, determined by trigger conditions, is written to tape on an
event-by-event basis. Data is written in 16384-bytes blocks sub-divided in 16-bit
words. In such an experiment a few billion events are written to tape. Since each
event typically consists of 50-100 words, the total data written from one experiment
corresponds to some 150 Gbyte. In the data analysis this raw data first has to be
processed in three steps; compression, presorting and sorting as described below.

4.1 Compression

The raw data from an experiment is first reduced at the same time as we perform
consistency checks. The compression procedure was performed using a C-program
as follows:

• Unpack raw data. Data is unpacked word by word.

• Remove various events.

1. Consistency checks. For example, both the time and energy signal of
the individual Ge detectors has to be present. Incomplete sets of signals
are removed.

2. Missing information. Events that do not fulfil certain conditions, e.g.,
have at least one valid Ge detector, or events which have irregular infor-
mation, are removed.

3. Unnecessary data. Some information is only used for redundancy
checks and is not necessary for further processing.

• Rearrange and repack data. The unpacked data is rearranged and repacked
in such a way that the amount of tape storage is reduced by more than a factor
of two.

17
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4.2 Presorting

In the presorting process the major part of the data handling takes place:

• Gain matching of Ge detectors. Due to a ∼ 0.5 µs 10+ isomer in 54Fe
these residual nuclei will be stopped in the Microball absorbers before the
transitions below the isomer are emitted. These transitions, with energies
between 146 keV and 3.4 MeV, are gain matched for each Ge detector using a
second degree polynomial function.

• Aligning Ge times and defining prompt and delayed γ-ray transi-

tions. Ge times are aligned and the prompt γ-ray transitions are defined
using a two-dimensional gate in a Ge-time vs. Ge-energy matrix. Delayed
γ-rays are defined by time gates next to the prompt time peak.

• Aligning Microball and Neutron Shell signals. For example, energy
and time signals from Microball and the Neutron Shell detectors are aligned
throughout the experiment.

• Particle identification. See below.

• Suppression of false two-neutron events. See below.

• Event-by-event Doppler correction. See below.

• Finally highly compressed data is written to tape or disc separated

by certain particle conditions, i.e., reaction channels.

4.2.1 Proton-α discrimination

An efficient evaporated particle identification is crucial for the study of nuclei follow-
ing a fusion-evaporation reaction. The main task of Microball is to detect evaporated
charged particles and provide a possibility for particle discrimination. The discrimi-
nation technique uses pulse-shape-analysis methods. The signal from a Cs(I) crystal
has two components; a fast component with a 0.7 µs decay time and a slow com-
ponent with a 7 µs decay time. α particles have a larger fraction of the signal in
the fast component than protons have, and by differentiating and integrating the
signals different quantities are obtained which are used to discriminate α particles
from protons. For a more detailed description of particle identification in Microball
see Ref. [27].

4.2.2 Neutron-γ discrimination

The major task of the Neutron Shell is to detect neutrons and discriminate them
from γ-rays. The neutron discrimination in the Neutron Shell is done in two steps.
A rough hardware pre-discrimination is obtained on-line by letting the beam pulse
signal veto the prompt γ-ray flash in the neutron detectors. A more sophisticated
discrimination is performed off-line. In both cases pulse-shape-analysis techniques
are used.
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Figure 4.1: Two-dimensional spectra from the Neutron Shell detector 5. Panels
(a)-(d) are raw spectra and dashed-line closed contours indicate gate conditions.
Panels (e)-(h) are spectra obtained from gate conditions from the three other types
of spectra. See text for details.
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Figure 4.2: Panel (a) shows a γ-ray spectrum gated with two α-particles, and panel
(b) shows a spectrum gated with two α-particles and one neutron.

The signals from a liquid scintillator look different for neutrons and γ rays. Neu-
trons create more scintillator light output in the delayed component of the signal
than the γ rays. The signals are differentiated and the zero-cross-over-time (ZCO)
is determined. ZCO is the time between a given reference, which in our case is the
beam pulse, and the point where the differentiated signal crosses the time axis. In
this way the ZCO will occur earlier for γ rays than for neutrons. The total energy
E deposited in the detector is determined by integrating the signal over a fixed time
window. The third parameter used is the tail energy Etail, which is determined by
integrating the signal in a delayed time window. Etail will be larger for neutrons
than for γ rays for the same total energy E. We also define the ratio R = Etail/E.
Figure 4.1 shows eight two-dimensional spectra from the fifth detector of the Neu-
tron Shell. The spectra in the left column are the raw spectra (without any gate
conditions) and the dashed-line closed contours are the final gates for neutrons. Note
that the binning of E and Etail is different for different spectral regions to keep a
balance between sufficient resolution and spectra size.

Spectra in the right column are the results when the gating conditions for the three
other spectra are fulfilled. For example, spectrum (e) is obtained when the gating
conditions in spectra (b),(c), and (d) are fulfilled. This is an iterative procedure and
a compromise between identification efficiency and γ-neutron misidentification has to
be done. A neutron-detector event which fulfils all four gate conditions is taken as a
neutron. Figure 4.2(a) shows a spectrum gated on two α-particles. This is as close as
we would get without neutron detectors, if we want to study 51Fe, which is populated
via the 2α1n channel. Figure 4.2(b) shows the enhancement of the 51Fe lines if we use
neutron detectors and the discrimination procedure described above. The difference
is obvious. In Fig. 4.2(a) we can barely see any transitions from 51Fe, while in
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Fig. 4.2(b) transitions from 51Fe are dominating. The contamination from 51Mn in
Fig. 4.2(b), which is populated via the 2α1p channel, is due to three effects. First
because of a small target impurity of 29Si, which results in the 29Si(32S,2α1p1n)51Mn
reaction where we fail to detect the evaporated proton. Secondly due to insufficient
neutron-γ discrimination and finally γ rays depopulating isomers in the ns regime,
e.g., the 17/2− isomeric state in 51Mn, can be interpreted as neutrons.

4.2.3 Suppression of false two-neutron events

False two-neutron events are rather common using neutron-detector arrays such as
the Neutron Shell. This is a problem since these events, which are due to neutron
scattering, are contaminating 2n-gated spectra. There exist, however, methods to
suppress them. First we realise that in false two-neutron events the neutron de-
tectors which fire are often immediate neighbours. By interpreting such events as
one-neutron events we will suppress the number of false two-neutron events dramat-
ically. However, the number of real two-neutron events will also be reduced. If we
assume that the number of real two-neutron events are distributed equally between
different detector pairs and that every Neutron Shell detector on average has 5 clos-
est neighbours then 5/30 ∼ 17 % of all real two-neutron events will be removed.
In practice the closest neighbour suppression is, however, necessary to attribute γ
rays to the extremely weak 2n channels. In principle we can go further and reinter-
pret events from pairs of detectors that has unusually many events in coincidence
compared to other detector pairs. The degree of suppression depends on what we
want to obtain. If we want to identify a previously unknown nucleus populated in
a 2n channel, it is necessary with a ‘hard‘ suppression to obtain as clean 2n-gated
spectra as possible. On the other hand, if we want to study a nucleus where tran-
sitions are already known we may prefer a ‘soft‘ suppression to get more statistics
for γγ-coincidence spectroscopy.

4.2.4 Efficiency of the Neutron Shell

If the neutron efficiency is below 100 % we will, e.g., see γ-ray transitions from the
nucleus populated in a 3p1n channel, in this case 56Co, in the 3p gated spectrum.
This is because we fail to detect the evaporated neutron. The relation between
neutron efficiency ǫn and intensities of γ rays from 56Co is:

R =
I(3p; γ in 56Co)

I(3p1n; γ in 56Co)
=

1 − ǫn
ǫn

(4.1)

where I(3p; γ in 56Co) and I(3p1n; γ in 56Co) are the intensities of γ-ray transitions
belonging to 56Co in the 3p and 3p1n-gated spectra, respectively. After rearranging
we get

ǫn =
1

1 +R
(4.2)

The ratio was measured to R=1.27(8) which gives ǫtrig
n = 0.44(2). However, in this

experiment data was written to tape only if four γ rays or three γ rays and one
neutron were detected in coincidence, which means that the obtained efficiency is
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biased by the trigger condition. The reason that the triggered neutron efficiency is
not unity, is that neither the hardware nor the software γ-neutron discrimination
is perfect. To get the true unbiased efficiency ǫn we have to consider only data
which have four or more γ rays in coincidence. In this way the obtained neutron
efficiency is independent of trigger conditions. This gives R=3.36(3) and we now
obtain ǫn = 0.23(1).
The triggered 2n efficiency is now easily obtained as ǫtrig

2n = ǫtrig
n ǫn = 0.10(1). How-

ever, since we have reduced the number of real two-neutron events, the real efficiency
will be suppressed with a factor X. In a similar way as above we define

R2n =
I(3p2n; γ in 55Co)

I(3p1n; γ in 55Co)
=

ǫtrig
n ǫnX

ǫtrig
n (2 − ǫtrig

n − ǫn)
(4.3)

Using the efficiencies above and the measured value R2n =0.058(4) we obtainX=0.34(2)
and ǫtrig

2n = ǫtrig
n ǫnX=0.034(2). This means that in the suppression of false two-

neutron events we remove 66 % of the real two-neutron events. This may sound
a lot, but one should remember that this suppression is very ‘hard‘ and performed
with the intention of identifying previously unknown nuclei populated via 2n chan-
nels. Once they are identified we can relax the suppression to include only closest
neighbours and get a suppression factor X ∼ 83 % and ǫtrig

2n ∼ 0.083.

4.2.5 The event-by-event reconstruction method

The energy resolution of the γ-ray peaks is worsened due to the reaction kinematics
of fusion-evaporation reactions. This is due to the Doppler shift of the emitted γ
rays expressed as

Eγ,lab = Eγ(1 + βcosθ) (4.4)

where Eγ,lab is the measured γ energy and Eγ is the transition energy. β= v
c

is
the velocity of the residual nuclei and θ is the position of the Ge detector. Finite
opening angles of Ge detectors, finite target thickness, and the effect of evaporated
particles induce uncertainties in θ and β which causes an uncertainty in Eγ,lab. The
contribution of finite opening angles and finite target thickness can be estimated
from the derivative of Eq. 4.4:

∆Eγ,lab = Eγcosθ∆β
∆Eγ,lab = Eγβsinθ∆θ

(4.5)

A simple Doppler correction can be obtained using

Eγ,corr =
Eγ,lab

1 + 〈β〉cosθ (4.6)

The average recoil velocity 〈β〉 is determined by adjusting it in the computer code
until the best energy resolution is obtained in the sum of Ge spectra taken at different
angles θ. Typical estimated values for the 32S+28Ni→60Zn∗ reaction at 125 MeV
beam energy employing a 0.5 mg/cm2 thick Si target are; 〈β〉=0.043 and ∆β=0.002.
The effective opening angles of the Gammasphere Ge detectors are approximately
∆θ=5◦. At a γ energy of 1500 keV using Eq. 4.5 and Eq. 4.6, this would give a
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Figure 4.3: Panel (a) shows an event where a compound nucleus evaporates two
α-particles and one proton to form a residual nucleus, and panel (b) relates polar
and azimuth angles with vector components.

total energy resolution (FWHM) of 10.5 keV, where the intrinsic resolution of the Ge
detectors contributes with 2.6 keV, and the uncertainties in β and θ contributes with
2.5 keV and 9.5 keV, respectively. In the calculations we used FWHM=2∆Eγ,lab

and the energy resolution is weighted over the number of detectors and detector
angles used in the Gammasphere experiment. As seen from the calculations above
the opening angles of the Ge detectors contributes the most. Note that the energy
resolution calculated above is only a rough estimate and that the effect of evaporated
particles is not taken into account.
To take this effect into account a more sophisticated Doppler correction is re-
quired [28]. Evaporated particles carry momentum and the residual nuclei will not
necessary recoil in the beam direction z. This is illustrated in Fig. 4.3(a). Since the
evaporation of particles is of a statistical nature this effect will also induce a Doppler
broadening because of the spread in β and θ. But since we measure the kinetic en-
ergies of the evaporated particles in the laboratory system Ti and the direction, this
can partly be corrected for by using an event-by-event reconstruction method. If
the mass of the evaporated particle is mi, the magnitude of its momentum becomes

pi =
√

2Timic2 [MeV/c] (4.7)

According to Fig. 4.3(b) the x, y and z components of the momentum are given by
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pi,x = pisinθicosφi

pi,y = pisinθisinφi

pi,z = picosθi

(4.8)

where θi and φi are the polar and azimuth angles of the particle detectors, respec-
tively. From momentum conservation we know that the momentum of the beam,
pbeam, equals the momentum of the residual nuclei, pres, plus the momentum of the
evaporated particles. Summing up pi,x, pi,y and pi,z of the evaporated particles from
one event, gives the velocity components and the total velocity of the residual nuclei
with mass Mres

β̃res,x = −
∑

i

pi,x/Mresc
2

β̃res,y = −
∑

i

pi,y/Mresc
2

β̃res,z = (
√

2TbeamMbeamc2 −
∑

i

pi,z)/Mresc
2

β̃res =
√

β̃2
res,x + β̃2

res,y + β̃2
res,z

(4.9)

where Tbeam and Mbeam is the kinetic energy and mass of the beam nuclei, respec-
tively. Equation 4.9 is true if we use an infinite thin target. This is, however, never
the case. We must also consider the energy loss of the recoiling nucleus in the target.
In principle, this requires knowledge of the interaction point in the target for every
event. This is impossible and we assume that the interactions on average take place
in the middle of the target. The energy loss in a Si target for nuclei in the A ∼ 60
region can be estimated from an equation parameterised from data from Northcliff
and Schilling [29]:

Eloss = deff(6.0 + 0.65 Zres + 0.27 Zres Tres/A− 4.36 Tres/A) (4.10)

where deff is the effective target thickness that the recoiling nucleus sees and is
given by

deff =
d

2
· β̃res

β̃res,z

[mg/cm2] (4.11)

The true target thickness is d, and Zres and Tres/A = 1

2
(Mres/A)c2β̃2

res are the proton
number and the kinetic energy per mass unit of the residual nuclei, respectively.
From the energy loss of the residual nuclei a so-called slowing-down factor s is
determined according to

s = (Tres −Eloss)/Tres (4.12)

and we get βres,i = sβ̃res,i, i = x, y, z. We now have all the information we
need to calculate event-by-event βres and the angle θeff between the recoiling nu-
cleus and the Ge detectors. The product βrescosθeff is given by the scalar prod-

uct of ~βres and the unitary vector describing the direction to the Ge detector
~e = (sinθGecosφGe, sinθGesinφGe, cosθGe) and is used instead of 〈β〉cosθ in Eq. 4.6.
The free parameters to be adjusted until lowest possible energy resolution is ob-
tained are Tbeam and d in Eqs. 4.9 and 4.11, respectively. A 2α1p-gated spectrum
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Figure 4.4: Panel (a) shows a 2a1p-gated spectrum obtained with an averaged
Doppler correction using 〈β〉=0.043. Panel (b) shows a 2a1p-gated spectrum ob-
tained with the event-by-event reconstruction method. Notice the reduction in
FWHM for the 1500 keV γ-ray transition in panel (b). See text for details.

obtained with the event-by-event reconstruction method described above is seen in
Fig. 4.4(b) and compared to a spectrum obtained with an averaged Doppler correc-
tion using 〈β〉=0.043 in Fig. 4.4(a). As seen in the figure the energy resolution is
improved by a factor ∼ 1.5.
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4.3 Sorting

In the sorting procedure the presorted data is processed in various programs to:

• Generate 1D spectra.

• Sort data into γγ matrices.

• Sort data into γγγ correlation cubes.

• Apply additional TE conditions.

4.3.1 TE gating

We have described how the detection of evaporated particles following a fusion-
evaporation reaction can be used to impose gating conditions in two-dimensional
spectra and study γ rays in coincidence. There is yet another method to further
clean the particle-gated spectra. This is the so called total-energy (TE) gating
method [30]. The method uses the fact that the excitation energy E∗ is (nearly) a
constant. By removing the Heavimet absorbers we can measure the sum-energy of
the γ rays, H , and the γ-ray multiplicity, K [31]. The total energy detected from
one event is then H + P , where P is the sum of the measured particle energies.
H + P is proportional to the excitation energy. Figure 4.5 shows two-dimensional
spectra used for TE gating. Spectra (a) and (c) show events in the 2α1p channel
(where 51Mn is populated) in coincidence with two γ -ray transitions from 51Mn.
Spectra (b) and (d) show contaminating events in the same channel that are double
gated on transitions from 50Cr. The only way for events from 50Cr (populated in
the 2α2p channel) to end up in the 2α1p channel is if we fail to detect or identify
one proton. In both cases we are missing the energy from this proton. If we study
Fig. 4.5 we see that events from 50Cr on average have lower P and H+P than events
from 51Mn. By putting gate conditions optimised for 51Mn, indicated by dashed-line
solid-contours in the figure, we can eliminate a large fraction of the 50Cr events in
the 2α1p spectrum. This is seen in Fig. 4.6. We see from the figure that not only
the peaks from 50Cr are reduced, but also the background.
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Figure 4.5: Two-dimensional spectra used for TE gating. Spectra (a) and (c) show
events double gated on γ-ray transitions in 51Mn. Spectra (b) and (d) show events
double gated on transitions in 50Cr. Dashed-line contours are gating conditions for
the 51Mn setting. See text for details.
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Chapter 5

Data Analysis

5.1 Coincidence Spectroscopy

When constructing level schemes including a lot of transitions it is useful to sort
particle- and TE-gated data in Eγ-Eγ matrices and Eγ-Eγ-Eγ cubes. By performing
γ-energy gates on one axis in a Eγ-Eγ matrix we can study the γ rays in coincidence.
Figure 5.1 shows an example. Panel(a) shows the γ-ray spectrum resulting from the
γ-energy gate at the 369 keV γ-ray transition in the Eγ-Eγ matrix gated by two
α-particles and one neutron, which corresponds to the residual nucleus 51Fe. We
see that several transitions are in coincidence with the 369 keV line. To continue
we set a γ gate around 1433 keV with the resulting coincidence spectra shown in
Fig. 5.1(b). From the two spectra we conclude that the 369 keV and 1433 keV lines
are in coincidence with several transitions at the same energy, but also that there
are transitions in one gate which are not present in the other. This implies, e.g.,
that the 1433 keV and 1754 keV transitions are parallel, and similar that the 369
keV and 1262 keV transitions are parallel. This assignment is supported by the 321
keV transition which together with the 1433 keV line adds up to 1754 keV and the
369 keV and 893 keV lines sum up to 1262 keV. Continuing in this way we can
construct the level scheme for 51Fe shown in Fig. 5.1(c).
The relevant part of a new extensive level scheme of the mirror partner 51Mn [32]
is shown in Fig. 5.1(d). Note the great similarities of the two level schemes. This
feature of mirror nuclei together with sum-energy arguments discussed above could
in fact be used to construct the level scheme of 51Fe without involving coincidence
spectroscopy at all.

5.2 Spin and Parity Assignment of Nuclear States

Spin and parity assignments of nuclear states are very important for the understand-
ing of the underlying physics. The assignments to nuclear ground states are often
based on β-decay measurements and from there we can deduce spin and parities of
excited states by studying connecting γ-ray transitions.

28
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5.2.1 Electro magnetic transitions

Assume a γ-ray transition from an initial nuclear state with angular momentum ~Ii
to a final state with angular momentum ~If . If we denote the angular momentum of

the γ ray with ~L the conservation of angular momentum gives

~Ii = ~L+ ~If (5.1)

The multipolarity L is thus given by the following selection rule

|Ii − If | ≤ L ≤ |Ii + If | (5.2)

The exception to this selection rule occurs when ~Ii = ~If . Since there are no monopole
(L = 0) transitions in which a single photon is emitted we have L 6= 0. The parity of
the radiation field depends on both the multipolarity and the character of the field.
Whether or not a γ-ray transition is parity conserving is given by the following rules

parity conserving : electric even L, magnetic odd L
parity breaking : electric odd L, magnetic even L

(5.3)

If we know the spin and parity for one nuclear state, we can determine the spin
and parity of other nuclear states by deducing the multipolarities and characters
of the connecting γ-ray transitions. A transition can be pure and stretched, that
is L = Ii − If = ∆I, or mixed. In the latter case the transition has contributions
also from higher multipolarities. The degree of mixing is given by the transitional
mixing ratio δ according to

δ =
〈If |M(T2L2)|Ii〉
〈If |M(T1L1)|Ii〉

(5.4)

where 〈If |M(TL)|Ii〉 is the matrix element of the operator M(TL) which besides
from changing the nuclear state from |Ii〉 to |If〉 also creates a photon of the proper
multipole order L and character T . Since we choose L2 > L1 a stretched transition
will always have δ = 0.

5.2.2 Spin assignment of nuclear states

Since γ-rays carry angular momentum the γ-ray transitions are associated with an-
gular distributions given by the spherical harmonics. To perform meaningful mea-
surements of angular distributions, without using coincidence methods, we require
a mechanism that aligns ~Ii in the γ-emitting nuclei. In the fusion-evaporation reac-
tion angular momentum is induced to the residual nucleus with the vector lying in
a plane perpendicular to the beam axis. This spin alignment is however, somewhat
destroyed from the effect of evaporated particles, the emittance of γ rays and the
presence of isomeric states. By detecting the γ-ray of interest in different polar
angles we obtain an angular distribution from which the multipolarity is deduced.
In Fig. 5.2 typical high-spin fully aligned angular distributions for a ∆I = 1 and a
∆I = 2 transition is seen. It is also possible to deduce the mixing ratio of the transi-
tion. Care should be taken here since for a given distribution there is almost always
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Figure 5.2: Typical high-spin angular distributions for a ∆I = 1 and a ∆I = 2
transition. Note that the angular distributions are symmetric around θ = 90◦.

two possible solutions for the mixing ratio, δ. What is often used for multipole
assignments is the so-called ratio of yields given by

R30−83 =
I(γ at 30◦)

I(γ at 83◦)
(5.5)

Of course, any combination of angles can be used as long as the ratio is sensitive
enough. Assuming a realistic spin alignment, we get for observed stretched ∆I = 2
transitions R30−83 ≈ 1.2, and for stretched ∆ = 1 transitions R30−83 ≈ 0.8.
Studying the angular distributions of two subsequent transitions there is an angular
correlation between them because the final state of the first transition is the initial
state of the second transition. What is often deduced is the ratio of directional
correlations of oriented states (DCO-ratio) [33], which is for example given by

RDCO(30 − 83; γ1, γ2) =
I(γ1 at 30◦; gated with γ2 at 83◦)

I(γ1 at 83◦; gated with γ2 at 30◦)
(5.6)

In general known stretched E2 transitions are used for gating. In this case we expect
RDCO ≈ 1.0 for stretched ∆I = 2 transitions and RDCO ≈ 0.6 for stretched ∆I = 1
transitions.

5.2.3 Parity assignment of nuclear states

To deduce parities of nuclear states we must also determine the character of the
connecting transitions. The most efficient method is to measure the polarisation
of γ-rays. Assuming spin alignment this method uses the fact that γ rays undergo
Compton scattering and that the direction of the Compton scattered γ-ray depends
on the character of it. This method can make use of segmented detectors, which are
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available in both Euroball and Gammasphere.
If polarisation measurements are not possible we have to rely on indirect methods.
It turns out that transitions with electric character is about 100 times more probable
than transitions with magnetic character for a given multipolarity. If we assume that
the lowest permitted multipole often dominates we can conclude that parity breaking
∆I = 1 and parity conserving ∆I = 2 transitions are most likely to be stretched E1
and E2 transitions, respectively. Using these arguments observed ∆I = 1 transitions
with significant mixing are most certainly mixed E2/M1 transitions.
Another example of indirect parity assignment is finally given. If we for example
identify a rotational structure we can at least tentatively assign the transitions to
be stretched E2 transitions. If we in addition can deduce spin and parity of at least
one of the states in the structure we can tentatively assign spin and parities for the
whole structure.



Chapter 6

Conclusions and Outlook

Excited states in the Tz = −1/2 nucleus 51Fe were identified for the first time. The
level scheme includes 18 previously unknown γ-ray transitions and reaches the fully
aligned Iπ = 27/2− terminating state of the five holes in the 1f7/2 shell. The 17/2−

state was found to be isomeric and the lifetime was measured to 2.87+0.09
−0.11 ± 0.43

ns. The Tz = +1/2 mirror partner 51Mn was previously known up to the termi-
nating 27/2− state. The mirror symmetry of 51Fe and 51Mn is discussed and the
general features of the CED diagram can be explained by the breaking and aligning
of proton pairs. The CED diagram is well reproduced by large-scale shell-model
calculations [34] and further improved by the decomposition of the Coulomb inter-
action in a monopole part and a multipole part [19].
Previously the study of mirror nuclei has been restricted to the comparison of level
energies. Although CED diagrams of mirror nuclei reveal a lot of interesting physics
much more can be learned if we also include studies of electromagnetic decay prop-
erties, such as lifetimes of excited states and transitional mixing ratios. To give an
example we deduced the B(E2) values for the 17/2− → 13/2− transitions in both
51Fe and 51Mn to be 0.12(2) W.u. To see how the B(E2; 17/2− → 13/2−) ratio de-
pends on the effective proton charge ǫp we performed simple shell-model calculations
and the result is shown in Fig. 6.1(a). The calculation is performed with the restric-
tion that ǫp + ǫn = 2 where ǫn is the effective neutron charge. As seen in the figure
there is a rather week dependence and we cannot say anything about the effective
proton charge in this case. We also investigated how the B(E2; 27/2− → 23/2−) ra-
tio depends on ǫp and the result is shown in Fig. 6.1(b). Here we see a much stronger
dependence but unfortunately we miss experimental values to compare to, since the
lifetime of the 27/2− state in 51Fe is unknown. The lifetime of the analogue state
in 51Mn is known to be 130(3) ps. A future experiment dedicated to measure the
lifetime of the 27/2− state in 51Fe would therefore be interesting as it could provide
us with valuable data on effective charges in the 1f7/2 shell. In a similar way as with
the B(E2) ratios we can also study differences in mixing ratios of dipole transitions
in the A = 51 mirror nuclei which should be able to tell us something about effective
g-factors (see paper 2 in this thesis). With the full statistics from the two exper-
iments that this work is based on we hope to perform extended mirror symmetry
studies of this kind. Another interesting aspect would be if we could identify core
excited states in 51Fe and compare these to analogue states in the recently extended
level scheme of 51Mn [32]. This would not only be interesting from mirror symmetry

33
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Figure 6.1: Theoretical end experimental B(E2) ratios as a function of effective
proton charge. SM stands for Shell-Model calculations. See text for details.

but may also probe differences in single-particle energies for neutrons and protons
in the upper fp-shell.
The identification of excited states in the Tz = −1 nucleus 54Ni is also a future
challenge. This would complete the spectroscopic information in the A = 54 T = 1
isobaric triplet. It would be of special interest since the comparison of excited states
in 54Ni and the Tz = +1 54Fe nucleus would provide us with a set of experimental
Coulomb matrix elements valid for the upper 1f7/2 shell to be used in shell-model
calculations. In addition, the possibility of measuring the lifetime of the 10+ state
in 54Ni and compare this to the known lifetime τ = 525(10) ns of the analogue state
in 54Fe will give us additional information on effective charges and the stiffness of
the 56Ni core with respect to quadrupole shape changes [35].
The continuation of experimental studies of mirror nuclei such as these discussed
above together with on-going theoretical achievements will certainly extend our
knowledge in this interesting field of nuclear structure physics.
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