

Oxidation of sulphur in the aqueous phase S(IV) is **oxidized** in aqueous solution mainly via H_2O_2 . $(H_2O_2 = hydrogen peroxide, very water-soluble)$ $H_2O_2(q) \Leftrightarrow H_2O_2(aq)$ (15) $HSO_3^- + H_2O_2(aq) + H^+ \Leftrightarrow 2H^+ + SO_4^{2-} + H_2O_4^{2-}$ (16) The oxidation is acid-catalyzed (requires H^+) which makes this S(IV) oxidation pathway efficient also at low pH. The reaction is very fast. Either all S(IV) or all H_2O_2 is titrated out in the aqueous solution. Lack of hydrogen peroxide $H_2O_2(g)$ is often the limiting factor. Hydrogen peroxide H_2O_2 is formed via $HO_2 + HO_2 \Rightarrow H_2O_2 + O_2$ in the gas phase (termination of HO_x radicals). Acidification 10

