

Lowering of Vapour Pressure

Salt droplet at RH < 100%:

- The lowering of the vapour pressure increases with salt concentration
- The droplet assumes the size that gives the same vapour pressure at the droplet surface as the

surrounding air:

- Low RH
 - Requires low vapour pressure at droplet surface
 - \Rightarrow Large vapour pressure lowering
 - \Rightarrow High ion concentration
 - ⇒ Small amount of water in the droplet (for the given amount of salt)
 - \Rightarrow Small droplet
- Similarly: High RH \Rightarrow Low ion concentration \Rightarrow Large droplet

Lowering of vapour pressure for diluted (ideal) solutions (Raoult's law)

$$\frac{p}{n} = \frac{n_w}{n + n}$$

 $p_0 \quad n_w + n_s$ n_s = moles ions, n_w = moles water

The vapour pressure is lowered in proportion to the number of ions substituting water molecules

Raoult's law with more common parameters:

$$\frac{p}{p_0} = \left[1 + \frac{6imM_w}{M_s \rho_w \pi D^3}\right]^{-1}$$

 $\begin{array}{l} M_w, M_s = molar mass water, salt; m = salt mass; \\ \rho_w = density water; i = ions per salt molecule; \\ D = droplet diameter \end{array}$

Raoult's law valid for RH close to 100%.

More concentrated solutions are described based on empirical data.

Cloud formation

Clouds form in H₂O supersaturation:

- Usually by upward air motion due to
- Ground absorbs solar radiation => changed air density
- Convergence of air

•

Topography and fronts

H₂O in vertical air motion:

- Upward motion causes expansion and therefore cooling
- Cooling reduces the saturation vapour pressure faster than expansion => RH up
- Particle growth
- Eventually supersaturation Droplet activation Cloud formation

Precipitation

- Cloud droplets up to approx. 30 µm
- Rain drops ~ 1 mm
- How to form such large drops? (Diffusional growth would require days!)

Cold clouds (Below zero degr.):

- Most particles form super-cooled droplets
- A small fraction form ice particles Dependent on particle composition
 - The fraction of ice particles increases at lower temperature
 - Below -40°C liquid droplets are not formed
- The saturation vapour pressure over ice is lower than over water for a given temperature
 - The ice particles grow at the expense of the supercooled droplets

Warm clouds

- Clouds without ice particles
- Form precipitation if drop size distribution broad

Precipitation forming:

- Colliding droplets/ice particles may merge to form a lager drop -Coalescence
- Cloud droplets have fairly high sedimentation velocity
 - Large droplet High sedimentation velocity \Rightarrow
- Threshold effect
 - Once started, the coalescences accelerates due to the presence of large droplets

Precipitation only from 1 of 10 clouds

The other clouds dissipates by evaporation of the droplets

Ţ

Light Scattering of Aerosols

- Atmospheric light scattering
 - Reduced visibility difficult to see distant objects
- Gas molecules scatter light inefficiently
- Aerosol particles scatter light efficiently
- Efficiency dependent on particle size
 - Strongest scattering when particle diameter >= wavelength
 - Anthropogenic particles mainly affects solar radiation
 Small effect on terrestrial radiation (long wave)
- Influence from relative humidity:
 - Water vapour scatters light inefficiently Water uptake by aerosol particles increases scattering at high humidity
 - Fog: Extremely strong light scattering

Climate Effects

• Greenhouse gases

- Increase atmospheric absorption of terrestrial radiation
- Cause increased long wave radiation from the atmosphere to the earth's surface

Aerosols

- Affects the earth's albedo, i.e. direct reflection of solar radiation to space
- Two aerosol effects
 - **Direct** radiative properties of the aerosol particles
 - **Indirect** aerosol affects the microstructure and hence the radiative properties of clouds

Exercise 8:1 c

The optical depth, δ , is on average 0.25 between 30 to 60° latitude in the northern hemisphere. The backscattered fraction, β , is 0.2, resulting in the albedo of the aerosol layer $A_a \approx \delta \cdot \beta = 0.25 \cdot 0.2 = 0.05$.

Calculate the radiative forcing (with sign) induced by the aerosol layer in the latitude interval given. The solar constant is 1370 W/m^2 and the earth's albedo $A_0 = 0.28$.

Hint: The total albedo can be obtained from $A_T \approx A_0 + A_a (1 - A_0)^2$.

Reference system without aerosol: A = A₀ = 0.28 Changed system with aerosol: A = A_T \approx A₀ + A_a(1-A₀)²

Radiative forcing: $\Delta F = F_{in} - F_{out}$ (changed system)

$$\begin{split} F_{in} &= F_S/4\\ Based \mbox{ on our simple climate model:}\\ F_{out} &= A_T F_S/4 + (1\text{-}f)\sigma T_j^{\,4} + f\sigma T_a^{\,4} \end{split}$$

Equilibrium in reference system:

$$\begin{split} F_{in} &= F_S/4 = A_0 F_S/4 + (1\text{-}f) \sigma T_j^4 + f \sigma T_a^4 \\ = &> \text{Only the albedo differs between } F_{in} \text{ and } F_{out} \end{split}$$

$$\Delta F = F_{in} - F_{out} = A_0 F_S / 4 - A_T F_S / 4 = -A_a (1 - A_0)^2 F_S / 4$$

= -0.05(1-0.28)^2 1370 / 4 = -8.9 W/m²