

Dry atmosphere	(excl. H ₂ O):	
Gas	Mixing ratio	Dry atmosphere:
Nitrogen (N ₂)	(mole/mole) 0.78	• Dominated by nitrogen and oxygen
Oxygen (O ₂)	0.21	• Noble gases, in particular argon
Argon (Ar)	0.0093	• Conc. $(O_2 + N_2 + Ar) \approx 1 \text{ mole/mole}$
Carbon dioxide (CO ₂)	365x10 ⁻⁶	• Remaining components trace gases: E.g. Carbon dioxide, ozone, methane
Neon (Ne)	18x10 ⁻⁶	
Ozone (O ₃)	$0.01 - 10 \times 10^{-6}$	Humid atmosphere:Water vapour: Varies, up to approx. 0.0 moles/mole
Helium (He)	5.2x10 ⁻⁶	
Methane (CH ₄)	1.7x10 ⁻⁶	
Krypton (Kr)	1.1x10 ⁻⁶	
Hydrogen (H ₂)	500x10 ⁻⁹	
Nitrous oxide (N ₂ O)	320x10 ⁻⁹	

Calculation Example: Calculate the density of dry air at T = 280 K and P = 1000 hPa!

The atmosphere an ideal gas (in most cases): PV = nRT

Density:

 $\rho = m/V = nM/V$

From the gas law: $n/V = P/RT = > \rho = MP/RT$

Air is a mixture of gases – average molar mass: $M_a = 29,0$ kg/kmole Gas constant: R = 8314,3 J/(kmole K)

Insert numbers: $\rho = M_a P/RT = 29,0*1000*100/(280*8314,3) = 1,25 \text{ kg/m}^3$

Atmospheric Concentration of Species

Expressions atmospheric concentration:

Number concentration:

• number of moles or molecules of type X per volume unit of air

Mass concentration:

- mass of X per volume unit of air
- Air compressible ⇒ These measures of concentration change with local atmospheric pressure

Mixing ratio:

- (No. moles of X)/(No. moles air molecules)
 Or: mass X/mass air
- Unaffected by expansion/compression
- Trace gases \Rightarrow small numbers
 - ppm (parts per million): 10⁻⁶
 - ppb (parts per billion): 10⁻⁹
 - ppt (parts per trillion): 10⁻¹²
- Kinds of mixing ratios:
 - ppbv (v = volume) based on number
 - pptm based on mass

Example helium:

 $[He] = 5.2 \ 10^{-6} \text{ mole He} / \text{ mole air} = 5.2 \text{ ppmv}$

Exercise 2-1 in Jacob: The atmospheric CO₂ concentration has during the industrial era increased from 280 to 400 ppmv. How large is this increase expressed as mass of atmospheric carbon? $C = \frac{n_C}{n_a}; \qquad n_c \text{ and } n_a \text{ are No. moles CO}_2 \text{ and air molecules}$ $\Delta C = \frac{n_{C2}}{n_a} - \frac{n_{C1}}{n_a} = \frac{\Delta n_C}{n_a} \qquad \Delta C = 400 - 280 \text{ ppmv} = 120 \text{ ppmv} = 120 \times 10^{-6}$ Increase of the carbon mass: $\Delta m_c = \Delta n_c M_c = \Delta C n_a M_c = \Delta C \frac{m_a}{M_a} M_c$ $M_c = \text{molar mass of carbon;} \qquad M_a = \text{average molar mass of air} \\ M_c = \text{increase of the carbon mass}.$

With known m_a : $\Delta m_c = 250$ billion tonnes = 250×10^{12} kg

Problem

How can we calculate the mass of the atmosphere?

Hint: The pressure at a level is caused by the weight of the overlying atmosphere

Exercise 2:3 Calculate the altitude that divides the mass of the atmosphere in two equal halves (Assume T constant at 260 K)! $m_ag = 4\pi R^2 P \implies m_a \sim P \implies m_a/2$ appears at P/2 Use the barometric law: $P(Z) = P(0)e^{-M_agz/RT}$ and find P(Z) = P(0)/2 $P(Z)/P(0) = e^{-M_agz/RT} = 0.5$ Logarithm at both sides: $-M_agz/RT = \ln(0.5)$ Reorganize: $z = -RT \ln(0.5)/M_ag = 5.27 \text{ km}$

