

$$F_{out} = 10 + 22 + 22 + 5 + 3 = 62 \text{ Pg C / y}$$

$$\tau = m/F_{out} = 11.8 \text{ y}$$

What is the dominant fate of carbon in the litter? What fraction is incorporated into the

- Atmosphere: 51 Pg C / y
- *Soil*: 3 Pg C / y

Dominant fate: CO₂ in the *atmosphere*

Fraction to *soil*: 3 / (3 + 51) = 5.6%

Atmospheric Aerosol

- Aerosol: Multiphase system consisting of solid or liquid particles suspended in a gas
 - 0.001 100 μm particles
 - Lower limit: Enough material to form a stable system
 - Upper limit: Low sedimentation velocity (v $\leq 25~{\rm cm/s})$
- Particle number concentrations
 - Over the oceans: ~100 cm⁻³
 - Urban environment: up to 1 million cm⁻³
- Mass concentrations
 - Over the oceans: $\sim 10 \ \mu g/m^3$
 - Urban environment: $10 1000 \ \mu g/m^3$
- Air close to the Earth's surface: $\sim 1 \text{ kg/m}^3 \Longrightarrow$ Aerosol Particles are trace constituents in the atmosphere
- Environmental effects
 - Climate
 - Acidification
 - Health

Problem

Which, do you think, are the most important sources of aerosol particles from human activities?

Sulphate in Atmospheric Particles

SO2 (gas) and sulphate (particles)

- Sulphate important component of atmospheric aerosol
- Most of the sulphate formed in the atmosphere from gaseous SO₂
- Emissions by human activities mainly from industrialized regions
- Many changes over almost 40 years
- Total emissions approximately constant over the same period
- High sulphate conc. in the SO₂ emission regions
- Large fraction anthropogenic in these regions

D (*1000)

Exercise 8:6

The Figure shows a typical atmospheric aerosol size distribution. Usually 4 modes are present: Ultrafine mode (A), Aitken mode (B), Accumulation mode (C) and Coarse mode (D). The modes result from different types of sources and aerosol-dynamical processes.

a: To which mode (A – D) do the following sources primarily contribute:

Sea-spray (1), formation of new particles in the atmosphere (2), windblown dust (3), combustion (4) and aged particles smaller than 1 µm diameter (5)

Coarse mode (D)
Ultrafine mode (A)
Coarse mode (D)
Aitken mode (B)
Accumulation mode (C)

b: The bars show the number of particles (right Y axis (C_{ai}): 200, 300, 100 and 0.005 particles/ cm³) at the maximum of each mode (d_i = 0.008, 0.05, 0.15 and 5 µm diameter). Approximate the distribution by these discrete values and calculate the mass concentration C_{mi} of each mode assuming particle density of 1.5 g/cm³.

c: Discuss the sources in (a) with respect to importance in terms of mass and number.

	b: $C_{mi} = C_{ai}m_i =$	c: 1) mass	
	$= C_{ai} \rho 4 \pi (d_i / 2)^3 / 3$	2) number	
	Mode A:	3) mass	
	inode it.	4) number	
т	• $C_{ai} = 200 \text{ cm}^{-3} = 200 \cdot 10^6 \text{ m}^{-3}$	5) Mass and	
300	• $\rho = 1.5 \text{ g/cm}^3 = 1500 \text{ kg/m}^3$	number	
250 c	• $d_i = 0.008 \ \mu m = 8 \cdot 10^{-9} \ m$		
150 D	$C_{mA} = 8 \cdot 10^{-14} \text{ kg/m}^3 = 0.08 \text{ m}^3$	$= 8 \cdot 10^{-14} \text{ kg/m}^3 = 0.08 \text{ ng/m}^3$	
tal partikla	$C_{mB} = 29 \text{ ng/m}^3$, $C_{mC} = 270 \text{ ng/m}^3$		
50	$C_{\rm mD} = 490 \text{ ng/m}^3$		
0			