Climate

Today's agenda

The role of the natural atmosphere in the climate system Human impact on the atmosphere and the climate

- Radiation balance (of the Earth)
- The greenhouse effect
- Radiative forcing
- Climate change

Literature connected with today's lecture: Jacob chapter 7, and IPCC SPM (on webpage)

Exercises: 7:1 – 7:6

Climate – what's climate?

...climate is the statistics of weather conditions in an area over a long period of time...

(WMO)

- Temperature
- Humidity
- Atmospheric pressure
- Wind
- Atmospheric particle count
- Other meteorological variables

Why are we interested in climate?

CO₂ – temperature – ocean acidity

The Sun warms the Earth

- Black body radiation – Emitted intensity, I, [W/m²] $I = \sigma T^4$

(σ = Stefan-Boltzmann's constant [σ = 5.67 10⁻⁸ W/(m²K⁴)])

- The sun is approximately a black body at 5800 K
- Radiation to the Earth Solar constant: (distributed over Earth's shadow area, the area of a circle)

$$F_{S} = \frac{P}{4\pi d^{2}} = \frac{4\pi R_{S}^{2} \sigma T_{S}^{4}}{4\pi d^{2}} = 1370 \, W/m^{2}$$

- The flux distributed over the entire surface of the Earth (the area of a sphere)
- The radiation flux per area at the Earth's surface becomes:

$$\Phi = \frac{\pi r^2}{4\pi r^2} \cdot F_s = \frac{F_s}{4} \approx 340 \, W/m^2$$

Radiation Balance of the Earth

- Radiation flux at the Earth's surface $\Phi = \frac{\pi r^2}{4\pi r^2} \cdot F_s = \frac{F_s}{4} \approx 340 \, W/m^2$
- Satellites show that the Earth's Albedo is 28% (A=0.28)

- Reflection by the Earth (average per area) $\Phi = F_{S}A/4$
- Absorption by the Earth (average per area) $\Phi = F_{S}(1-A)/4$
- Radiation balance
 - The Earth emits the same amount as is absorbed
 - Consider the Earth as a black body:

 $\sigma T_E^4 = F_S(1-A)/4$

- \longrightarrow T_E = 257 K
- The earth viewed from space
 - Effective temperature -16°C
 - The temperature that the Earth would have had if it did not have an atmosphere (GHGs)

The greenhouse effect warms...

- An "insulating" layer of GHGs
- Prevents radiation from penetrating through the atmosphere
- Keeps the energy in the Earth-atmosphere-system

- The Earth's *surface* are heated by the Sun
- The Earth then emits radiation that get trapped by GHGs

Atmospheric Absorption of Radiation

- The sun solar radiation
 - High temperature short wavelength
- The earth terrestrial radiation
 - Lower temp. longer wavelength
- UV absorbed by O_2 and O_3
- The atmosphere fairly transparent for solar radiation (H_2O)

- H₂O, CO₂, CH₄, N₂O, O₃ and CFC absorbs large fraction of the terrestrial radiation
- Atmospheric window ($\lambda = 8 13 \mu m$): Radiation direct from the surface to space

Radiation Spectrum of the Earth

- The Earth radiation spectrum differs from black body radiation
 - Absorption and re-emission in the atmosphere
 - The atm temp decreases with altitude
 - Temp determines radiation (σT⁴) Less radiation from a cold body
- Combination of black bodies of different temperatures

- Atmospheric "window" (8-13µm):
 - \Box Weak absorption in the atm \Rightarrow
 - Radiation from surface T≈320K (North Africa!)
- CO₂ at 15 µm:
 T≈215K
 - effective emission altitude ~ 10 km
- H₂O (7 & 20 μm):
 - □ T≈260K
 - effective emission altitude ~ 5 km (precipitation keeps H₂O at low altitudes)
 - The greenhouse effect:
 - Atm absorption + atm temp decrease with altitude \Rightarrow
 - □ Part of the terrestrial emission from lower temp ("deep valleys" in the spectrum) \Rightarrow
 - Radiation balance
 - Total emission corresponding to 257 K (T_E) needed
 - => increased overall temperature to compensate for the dips in the spectrum
 - => Increased surface temperature

Radiation Balance

\mathbf{o} \mathbf{r}

Short wave radiation (in):

- 28% reflected (19% clouds)
- 72% absorbed (47% surface)

Long wave radiation:

• 96% atmosphere \rightarrow surface

Non-radiative components:

 24 + 5% heat transport from surface to atmosphere (vapour formation, convection)

The greenhouse effect:

- The balance of the surface
 - $\Phi_{rel} = 22+25+96-24-5 = 114\%$
- The greenhouse effect increases the radiation to the surface
 - 14% higher than without an atmosphere

A Simple Climate Model

Assumptions on the atmosphere:

- Thin, isothermal layer
- Absorbs fraction **f** of the terrestrial radiation
- Transparent to solar radiation

Radiation balance:

Earth + atmosphere :

$$\frac{F_{s}(1-A)}{4} = (1-f)\sigma T_{j}^{4} + f\sigma T_{a}^{4}$$

The Atmosphere: $f\sigma T_j^4 = 2f\sigma T_a^4$

```
\Rightarrow
T_{j} = \left(\frac{F_{s}(1-A)}{4\sigma(1-f/2)}\right)^{1/4}
```


Now we have a simple climate model for understanding the atmosphere...

Radiative Forcing

The initial change caused by a change in radiative properties(!) (excluding climate feed-backs)

- 1. Starting conditions (Equilibrium)
 - Radiation model
 - Specify system components
 - Compute temperature

2. Perturb the system

- Specify new components
- Temperatures are kept unchanged
- Causes difference between incoming and outgoing radiation
- Radiative Forcing $\Delta F [W/m^2]$
 - Positive \rightarrow Warming
 - Negative \rightarrow Cooling
 - "Theoretical" product (nature does not "freeze" starting temp)
 - Frequently used to describe the potential of climate perturbations

Climate Change Caused by Man

Last ice age, 11 500 y ago

- Natural GH effect (CO₂, H₂O) increases surface temp by 33° C
- Ongoing climate change:
 - Increasing air and ocean temp
 - Reduced snow cover
 - Rising sea level
- Increased GHG concentration has increased the GH effect
- GHG emissions explain climate change?
 - Historical temp variations larger Due to variation in solar activity

- Natural variations do not explain the increased temperature in the last 200 years
 - Climate models predict further warming IPCC (UN climate panel):
 - " It is extremely likely that human influence has been the dominant cause of observed warming since the mid 20th century."

Climate Change

- Change of the radiation properties causes:
 - Initial temperature change
 - Feedbacks due to change
- Combines to a climate change

${\rm H_2O}\ feedbacks$

- H₂O the most important GHG
 - Human's emissions small compared with the natural sources
- Increase of another GHGs \Rightarrow increased temp \Rightarrow evaporation of H₂O \Rightarrow further increased temp \Rightarrow more evaporation...
- Counteraction
 - cloud formation and precipitation
 - Prevents H₂O from reaching high (cold) altitudes
- The role of clouds in a temperature change is still unclear:
 - more $H_2O \Rightarrow$ increased cloudiness \Rightarrow increased albedo
 - more $H_2O \Rightarrow$ larger cloud drops \Rightarrow faster formation of precipitation \Rightarrow reduced cloudiness \Rightarrow reduced albedo
- Large quantitative uncertainties concerning clouds in the climate system

Climate Change

- Feedbacks due to change
 - complicated
 - large quantitative uncertainties
- The initial phase is directly connected with the radiative properties
 - better understood quantitatively
- The potential of climate change of greenhouse gases (radiative forcing) is known with high accuracy

Climate Sensitivity

• How does ΔF relate to a temperature change when feedbacks are neglected?

(4)

Radiative Forcing (greenhouse gases):

$$\Delta F = F_S (1 - A) / 4 - (1 - \frac{f + \Delta f}{2}) \sigma T_0^4 =$$

= $(1 - \frac{f}{2}) \sigma T_0^4 - (1 - \frac{f + \Delta f}{2}) \sigma T_0^4 = \frac{\Delta f}{2} \sigma T_0^4$ (1)

Assume a new temperature equilibrium:

$$\frac{F_S(1-A)}{4} = (1 - \frac{f}{2})\sigma T_0^4 = (1 - \frac{f + \Delta f}{2})\sigma (T_0 + \Delta T_0)^4$$
(2)

Small perturbations: (neglect second order terms...) $(T_0 + \Delta T_0)^4 \approx T_0^4 + 4T_0^3 \Delta T_0$ (3)

Combine (2) and (3) $\Delta T_0 = \frac{T_0 \Delta f}{8(1 - \frac{f}{2})}$ from (1) and (4):

 $(T_0 = 288 \text{ K}; f = 0.77)$ $\lambda = \text{climate sensitivity parameter}$

Problem

IPCC estimate that a doubling of the CO_2 concentration causes a radiative forcing (ΔF) of 4.4 W/m². Assuming no feedbacks on temperature change, how much will the average temperature change on earth?

Hint: The climate sensitivity parameter λ

Solution: $\Delta T = \lambda \cdot \Delta F = 0.3 \cdot 4.4 = 1.3 \text{ K}$... of rapid warming Feed-back in the climate system gives further warming

Radiative Forcings of Pollutants

		Emitted compound	Resulting atmospheric drivers		Radia	ative fo	orcing	by er	nissio	ns and	d drive	ers	l cc	Level of
Anthropogenic	jases	CO ₂	CO2		 	I I					1.	68 [1.33 to 2.0)3]	VH
	Well-mixed greenhouse g	CH_4	CO ₂ H ₂ O ^{str} O ₃ CH ₄		l I	l I		⊢ •		 	0.	97 [0.74 to 1.3	20]	н
		Halo- carbons	O ₃ CFCs HCFCs		 		-			1	0.	18 [0.01 to 0.3	35]	н
		N ₂ O	N ₂ O		, 	- 	*			I	0.	17 [0.13 to 0.3	21]	VH
	id aerosols	со	CO ₂ CH ₄ O ₃			l I	I ♦I				0.	23 [0.16 to 0.3	30]	м
		NMVOC	CO_2 CH_4 O_3		 	 	H+I				0.	10 [0.05 to 0.1	15]	м
	gases an	NO _x	Nitrate CH ₄ O ₃		' 	¦ ⊦↓	1			I I	-0 .1	5 [-0.34 to 0.0	03]	м
	Short lived	Aerosols and precursors (Mineral dust,	Mineral dust Sulphate Nitrate Organic carbon Black carbon								-0.2	?7 [-0.77 to 0.3	23]	н
	a	SO ₂ , NH ₃ , Organic carbon nd Black carbon)	Cloud adjustments due to aerosols	ŀ	 		1			 	-0.5	5 [-1.33 to -0.0	06]	L
	Albedo change due to land use						l				-0.1	5 [-0.25 to -0.0)5]	м
Natural			Changes in solar irradiance		 	-	•I I			- 	0.	05 [0.00 to 0.1	10]	м
				_	-1	()		1	2		3		
					Rad	diative	forci	ng rela	ative to	o 175	0 (W r	n ^{−2})		

- Radiative forcing
 - Expresses change in radiative properties or potential climate change
 - Difficult to translate to temperature change due to feedbacks
- The radiative forcing by greenhouse gases (GHG) quantitatively known
- Larger uncertainties in the direct aerosol effect
- The indirect aerosol effect poorly known quantitatively

Radiative Forcings of Pollutants

We have significantly changed the radiative properties

- Difficult to estimate temperature change due to feedbacks

- Anthropogenic ΔF : +2.3 W/m²
- Climate sensitivity factor (λ) neglecting feedbacks:
 - $\Delta T = \lambda \Delta F = 0.3 x 2.3 = 0.7 K$
 - ΔT observed until 2011: 0.8 K
 - Slow feed-backs will result in future warming
- Large uncertainty 1.1 3.3
 W/m²
 - Mainly from aerosols
- => Large uncertainties in the climate sensitivity
- => Aerosol forcings have the potential to mask the warming from greenhouse gases
- Might delay detection of dangerous climate change

Future scenarios

Future - Temperature and precepitation

Future – Ice extent and ocean acidity

(c)

Northern Hemisphere September sea ice extent (average 2081–2100)

CMIP5 subset

CMIP5 subset

Change in ocean surface pH (1986-2005 to 2081-2100)

What we talked about

The role of the natural atmosphere in the climate system Human impact on the atmosphere and the climate

- Radiation balance (of the Earth)
- The greenhouse effect
- Radiative forcing
- Climate change (ongoing and future)

Literature connected with today's lecture:

Jacob chapter 7, and IPCC SPM (on webpage)

Exercises: 7:1 – 7:6