

How do we predict the future climate on Earth?

- Very complex task
- Based on science
- IPCC
- CMIP
- RCP (SSP)

What is a model?

• Mathematical representation of a real feature

• E = mc^2

Why do we need models?

- We can observe what is happening currently and what has happened before
- In order to estimate what will happen in the future we need models.

History of climate modelling

- 1985 Svante Arrhenius calculated on the radiative effects of CO2
- 1922 First attempt at predicting the weather numerically
- 1940 1950 weather models start being run on powerful computers
- 1950 Start to develop general circulation models (GCM)
- 1950 1960 A lot of development of these models, including radiation
- 1970 satellites observing the Earth starts being used to validate the models
- 1970 the first reports of CO2 impact on climate reach politicians

Climate model basics

- Governing equations:
 - Equation of motion (conservation of momentum; Newton's 2nd law)
 - 2. Continuity equation (conservation of mass)
 - Thermodynamic energy equation (conservation of energy; 1st law of thermodynamics)
 - **4**. Equation of state ($p = \rho RT$)
 - Continuity equation for water in various forms (conservation of water mass)
 - 6. Chemical transformation equations for trace gases and aerosols

Earth System Models Growth of Climate Modeling

The World in Global Climate Models

1990 -500 km (T21)

Resolution

Resolution

- Spatial resolution
 - Changing resolution
 - substantially increases
 - run time of the model (10 times as much for a doubling of resolution)
 - output data size (4 times as large)
- Vertical resolution
 - 30 layers up to 40 km
 - More layers close to the surface
- Temporal resolution
 - 30 min
- 1,753,152 time steps for 100 years

Scales

How do we represent reality in climate models?

Parameterizations

- What is a parameterization?
 - A mathematical representation of a feature
- Parameterizations can be based on:
 - Theory
 - Theoretical parameterizations more flexible
 - Measurements
 - Lab measurements
 - Field measurements

Different types of variables in the model

- Prognostic variables directly predicted by the model
- Diagnostic variables variables calculated from prognostic variables
- Example:
 - Temperature and specific humidity are prognostic From this the relative humidity can be calculated

Terminology

- GCM Global Circulation Model
- GCM Global Climate Model
- ESM Earth System Models

Source: ©2013 Nature Education

How many climate models are there?

- About 25 "different" ESM in the world
- ESM build up of different models
- Coupler sends information between the models

Earth system models

- About 25 "different" ESM in the world
- ESM build up of different models
- Coupler sends information between the models

Earth system models

Models most often not run "fully coupled"

Earth System Modelling

- Programming language Fortran
- NorESM Almost 2 million lines of code
- Run on hpc (high-performance computing) centers
- Atmosphere:
 - Resolution 1.9 x 2.5 °, 30
 vertical levels (coarse)
 - 410 400 grid boxes

What is the IPCC?

- Intergovernmental Panel on Climate Change
- Climate researchers summarize the current state of climate research
- Established in 1988 by UNEP and WMO
- Task is to asses the risks and impacts of climate change
 - Does not conduct research
 - Synthesise existing research
- Deliver assessment reports (AR)
 - AR5 released in 2013-2014
 - AR6 will be released in 2022 (already being written)
 - AR often contain CMIP (climate model intercomparison project)

What is the IPCC?

- Reports are reviewed by both other scientists and governments
- Also produces special reports
- Many researchers (2500)
 - Work for free
 - Write on their field of expertise
 - Balance
 - Men and women
 - Junior and senior
 - Developed and developing countries

What is CMIP?

- Coupled model intercomparison project
- Run the same climate experiments with all models (who wants to participate)
- Began in 1995
- Make the model data available to other scientists
- CMIP5 was included in AR5
- Nowadays more specialised MIPS: AMIP, VolMIP

How are the models run for CMIP?

- Spin-up
 - Make sure the model is in balance
 - Create a climate in the model
 - Run with pre-industrial emissions
 - Hundreds of years

- Deck simulations (Diagnostic, Evaluation and Characterization of Klima)
 - Pre-industrial Control (min 500 years)
 - 4xCO2 concentration (min 150 years)
 - CO2 increase at 1 % per year (min 150 years)
 - AMIP (atmospheric model intercomparison project)
 - Simulate 1979 2014
 - Fixed sea surface temperature and sea ice
 - CO2 prescribed

- CMIP6 historical simulations
 - 1850 2014
 - One with CO2 concentrations from measurements
 - One with CO2 emissions from measurements

IPI-ESM-LP

MRI-CGCM

NorFSM1.M

Causes of climate change

- Solar output
- Plate techtonics
- Orbital variability
- Ocean variability
- Volcanism
- Human influences

Signs of climate change

- Temperature Increase/decrease
- Glaciers and sea ice loss/Gain
- Vegetation changes
- Sea level changes
- Changed precipitation patterns

 Variation due to changes in Earths orbit around the sun (Milankovitch cycles)

Global mean temperature near-term projections relative to 1986-2005

What is RCP?

- RCP representative concentration pathway
- Is calculated using economic models
- Model future socioeconomic pathways
 - RCP2.6 global effort to reduce emissions
 - RCP8.5 business as usual
- There will be new scenarios in CMIP6
 - SSP (Shared socio-economic pathways)
 - At least 5 different scenarios

Global mean temperature near-term projections relative to 1986-2005

Temperature and Precipitation

The future

(e)

Future change in 20yr RV of warmest daily Tmax (TXx)

(f) Future RP for present day 20yr RV of wettest day (RX1day)

Thank you!

http://www.upworthy.com/one-guy-with-a-marker-justmade-the-global-warming-debate-completely-obsolete-7