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Increasing springtime ozone mixing ratios in the free
troposphere over western North America
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In the lowermost layer of the atmosphere—the troposphere—
ozone is an important source of the hydroxyl radical, an oxidant
that breaks down most pollutants and some greenhouse gases1.
High concentrations of tropospheric ozone are toxic, however,
and have a detrimental effect on human health and ecosystem
productivity1. Moreover, tropospheric ozone itself acts as an effec-
tive greenhouse gas2. Much of the present tropospheric ozone
burden is a consequence of anthropogenic emissions of ozone
precursors3 resulting in widespread increases in ozone concentra-
tions since the late 1800s3–7. At present, east Asia has the fastest-
growing ozone precursor emissions8. Much of the springtime east
Asian pollution is exported eastwards towards western North
America9. Despite evidence that the exported Asian pollution pro-
duces ozone10, no previous study has found a significant increase
in free tropospheric ozone concentrations above the western USA
since measurements began in the late 1970s5,11,12. Here we compile
springtime ozone measurements from many different platforms
across western North America. We show a strong increase in
springtime ozone mixing ratios during 1995–2008 and we have
some additional evidence that a similar rate of increase in ozone
mixing ratio has occurred since 1984. We find that the rate of
increase in ozone mixing ratio is greatest when measurements
are more heavily influenced by direct transport from Asia. Our
result agrees with previous modelling studies, which indicate that
global ozone concentrations should be increasing during the early
part of the twenty-first century as a result of increasing precursor
emissions, especially at northern mid-latitudes13, with western
North America being particularly sensitive to rising Asian emis-
sions14. We suggest that the observed increase in springtime back-
ground ozone mixing ratio may hinder the USA’s compliance with
its ozone air quality standard.

Inventoried global anthropogenic ozone precursor emissions of
nitrogen oxides (NO 1 NO2 5 NOx) and volatile organic com-
pounds increased rapidly during 1960–1990, but levelled off in the
1990s15. Comprehensive inventories of ozone precursors have not yet
been compiled for the years since 2000 and uncertainties remain
whether total global emissions have increased since then. However,
satellite measurements of column NO2 indicate increased NOx emis-
sions during 1996–2005 in China (up to 29% per year) and other
locations in Asia, while emissions decreased in Europe and the USA8.
The most recent bottom-up inventories indicate that south and east

Asia’s NOx emissions increased 44% during 2001–2006, with an
increase of 55% within China16, while ozone precursor emissions
decreased by more than a third across Europe1 (1990–2005) and
the USA17 (1985–2008).

It is possible that increasing emissions from emerging economies
like China, with relatively limited emissions controls, are outpacing
reductions in the developed economies. This scenario would probably
increase tropospheric ozone, which should be observable in the mid-
troposphere above western North America. This region is downwind
of Asian emissions and also receives aged emissions from Europe and
North America that have circled the northern hemisphere.

At the surface significant daytime ozone increases (0.19–0.50 parts
per billion by volume per year, p.p.b.v. yr–1) have occurred at several
rural sites in the western USA based on 1987–2004 yearly data11, while
springtime ozone increased by 0.33–0.59 p.p.b.v. yr–1. However, the
causes of the ozone increases at these sites were not clearly identified.
Merged ozone records from several US west coast sites show that
springtime ozone increased by 0.46 p.p.b.v. yr–1 (1985–2007) when
winds from the North Pacific Ocean were strongest, indicating an
increase in marine boundary layer background ozone18. These rates
are much higher than the surface ozone rate of increase (Northern
Hemisphere annual average) attributed by chemical transport models
to rising Asian emissions19.

Regarding the free troposphere above the western USA, no previous
study had found a significant ozone increase, despite frequent impact
by Asian pollution plumes9. Ozone measurements in the western
North American free troposphere are relatively few, with the longest
records being the weekly ozonesonde profiles above Edmonton,
Alberta; Boulder, Colorado; and Trinidad Head, California. No sig-
nificant ozone trend occurred above Edmonton during 1980–2001,
but ozone did increase significantly during 1991–200120. No signifi-
cant increase was found above Boulder (1985–2004)5 or Trinidad
Head (1997–2007)21. Upper tropospheric ozone measurements made
by commercial aircraft in the late 1970s and late 1990s revealed sig-
nificant increases above the eastern USA, among other regions, but
not above western North America where small sample sizes in the late
1990s may have prevented the identification of significant changes12.
In contrast, mid-tropospheric ozone measurements made by research
aircraft above coastal California during the springtime of 1984 and
2002 show an increase of 15 p.p.b.v. However, this apparent increase
may simply have been due to interannual variability22.
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Our goal is a reanalysis of all available free tropospheric ozone
measurements above western North America during springtime of
1984–2008 to quantify the change in ozone using the largest data set
possible. The analysis was restricted to April–May, when Asian emissions
have their greatest impact on western North America9. Emphasis was
placed on the mid-troposphere (3.0–8.0 km) where the most data are
available, but the upper troposphere (8.0–12.0 km) was also addressed.
Ozone measurements were gathered from ozonesondes, lidar and com-
mercial and research aircraft across western North America (25u–55uN,
130u–90uW). A particle dispersion model (PDM) was used to determine
the 15-day transport history of every measurement (see Methods).

Continuous ozone data with adequate sample sizes (see Methods)
are available in the mid-troposphere during 1995–2008 (Fig. 1a),
where median ozone values have a significant rate of increase of
0.63 6 0.34 p.p.b.v. yr–1. Similar values are found for the 33rd and
67th percentiles, whereas rates for the 95th and 5th percentiles are not
significant. The only other year with a large sample size is 1984, with a
median ozone value (46 p.p.b.v.) that is 9–20 p.p.b.v. less than any
year in the period 1995–2008. When 1984 is included in the analysis,
the ozone rate of increase is slightly greater for all percentiles (Fig. 1a),
suggesting that the 1995–2008 ozone rate of increase can be extended
to 1984. Transport patterns do vary interannually, but PDM analysis
shows that no transport anomaly occurred in 1984, indicating that
mid-tropospheric ozone was substantially lower in 1984 owing to
reduced photochemical production rather than unusual transport.
No other large April–May data sets are available from the 1980s to
corroborate the 1984 measurements. However, mid-tropospheric
ozone data measured above the western USA by a research aircraft
in June 198523 and May–June 198624 have mean values of 47 and
53 p.p.b.v., respectively. Although these measurements occur later
in the year, and have not undergone the same data averaging and
processing as applied to the data in Fig. 1a, their low values are
consistent with the 1984–2008 rate of increase found here.

Figure 1b–g shows the average transport history of air parcels in both
the atmospheric column and the 300 m layer adjacent to the Earth’s
surface, associated with the lowest, middle and highest third of ozone
measurements. The lowest ozone values have source regions to the west,
stretching from the mid-latitudes to the tropics, with surface source
regions mainly in the sub-tropical North Pacific. As ozone increases the
source region shifts further west with greater influence from east Asia.
Influence from the westernmost North Pacific is notable because it
contains one of the world’s major shipping routes, with global shipping
producing about 13% of anthropogenic NOx emissions15.

The analysis so far contains ozone measurements that experienced
varying degrees of transport from the North American boundary
layer. To focus on the background air entering western North
America, measurements with a strong and recent influence (,5 days)
from the North American boundary layer were identified by the PDM
and removed (Supplementary Information). This procedure resulted
in a median ozone rate of increase of 0.71 6 0.45 p.p.b.v. yr–1 for
1995–2008 (compared to 0.63 6 0.34 p.p.b.v. yr21 for the unfiltered
data), and 0.76 6 0.29 p.p.b.v. yr–1 for 1984–2008 (compared to
0.70 6 0.22 p.p.b.v. yr–1 for the unfiltered data). The stronger rate
of increase found in the background air demonstrates that recent
North American influence is not responsible for the increasing
ozone. Given the decreasing North American ozone precursor emis-
sions since 19858,14,17, and the decrease in urban extreme ozone events
across much of the USA25, it is unlikely that aged North American
emissions are contributing to the increase of background ozone.
PDM output can also be used to identify trends in the frequency of
transport from the important ozone precursor emission region of
south Asia and east Asia (referred to as SA/EA and including India,
southeast Asia and China). Although the quantity of air transported
from the SA/EA boundary layer to the North American free troposphere
varied interannually, we found no significant trend during 1995–2008.

To remove the influence of interannual variability associated with
transport from various emission regions we examined the ozone rate

of increase by dividing the full 1995–2008 ozone data set (Fig. 1a) accord-
ing to weaker or stronger transport from a particular emission region.
Figure 2 showstheresidence timeof the airparcelsassociatedwithweaker
or stronger transport from the anthropogenic NOx sources within SA/
EA. Ozone data with weaker transport from SA/EA have a strong asso-
ciation with transport from the central North Pacific and increase by
0.45 6 0.32 p.p.b.v. yr–1 (P 5 0.01), which is less than the overall rate of
0.63 6 0.34 p.p.b.v. yr–1 (Fig. 1a). In contrast, data with stronger trans-
port from SA/EA have a strong surface influence from China and sub-
tropical regions of the westernNorthPacific, withanadditional influence
from southeast Asia and northern India, and increase at a higher rate of
0.80 6 0.34 p.p.b.v. yr–1 (P 5 0.00). Weaker or stronger transport from
China alone yields similar results of 0.42 6 0.39 p.p.b.v. yr–1 (P 5 0.04)
and 0.72 6 0.36 p.p.b.v. yr–1 (P 5 0.00), respectively. Because the direct
transport routes from India and southeastern Asia to western North
America traverse China9, this analysis cannot quantify the relative con-
tributions of China, India and southeast Asia to the ozone increase. SA/
EA was the only region in the Northern Hemisphere associated with an
ozone rateof increase greater thanthe overall rateof0.63 p.p.b.v. yr–1.For
example, strong transport from Japan/Korea has an ozone rate of
increase of 0.52 6 0.40 p.p.b.v. yr–1 (P 5 0.02), much lower than when
transport from SA/EA is strong. The strong transport pattern from
Japan/Korea has relatively long surface residence times above the western
North Pacific, and shorter residence times above continental Asia
(Supplementary Information). This small shift in transport away from
continental Asia has a large impact on the ozone rate of increase above
western North America.

Because this study shows a stronger ozone rate of increase above
North America when air masses originate in the rapidly growing emis-
sion regions of SA/EA, recent ozone changes in Asia deserve attention
(Supplementary Information). The limited long-term observations
within Asia26–28 show ozone increases of 0.58–1.2 p.p.b.v. yr–1 at surface
sites in China, Japan and Taiwan, comparable to our rate of
0.80 p.p.b.v. yr–1 above North America when transport from Asia is
strong. Recent model analysis indicates that about half of the ozone
transported from Asia to North America is produced in Asia and the
rest is produced during trans-Pacific transport29.

Lastly, the ozone rate of increase was calculated for the upper tro-
posphere, using all available data during 1995–2008. Only the 50th and
33rd percentiles show significant increases in ozone—0.58 6 0.52 and
0.66 6 0.52, respectively—with values and transport history similar to
the mid-tropospheric analysis. The strong influence of stratospheric
intrusions in the upper troposphere probably explains the lack of sig-
nificant rates of increase in the 67th and 95th percentiles. Further data
analysis in the Supplementary Information shows that the mid- and
upper tropospheric results are robust and not strongly influenced by air
mass sampling biases, vertical ozone variation, or stratospheric impact.

We explored the discrepancy between this study, which shows a
statistically significant ozone increase above western North America,
and previous ozonesonde analyses which do not. Mid-tropospheric
ozone rates of change above Trinidad Head (1998–2008), Boulder
(1995–2008)andEdmonton(1995–2008),were0.37 6 0.58 p.p.b.v. yr–1,
0.05 6 0.46 p.p.b.v. yr–1, and 0.12 6 0.52 p.p.b.v. yr–1, respectively.
Although these values are positive, they are much lower than the rate
in Fig. 1a and statistically insignificant. The annual sample sizes for the
ozonesonde sites are fairly low (32–564 data points), with larger sample
sizes occurring in more recent years at Edmonton and Trinidad Head.
The lack of significant rates of increase from ozonesondes could be due
to small sample sizes in a region of high springtime ozone variability,
requiring a much longer data record to detect any significant
increase11,30. Removing the ozonesondes from the full data set has
little impact on this study, slightly increasing the 1995–2008 mid-
tropospheric ozone rate of change from 0.63 6 0.34 p.p.b.v. yr–1 to
0.69 6 0.43 p.p.b.v. yr–1.

This study has implications for North American air quality14,19

and quantification of the radiative forcing due to ozone2. Our data
provide an important benchmark for model simulations of free
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tropospheric ozone downwind of Asia. Models that can reproduce
the observed ozone rate of increase in this region will provide more
accurate estimates of changes in air quality and ozone radiative
forcing since pre-industrial times.

We suggest that the free tropospheric ozone increase could also
affect the surface. Previous studies show that polluted mid-
tropospheric air entering western North America can descend to
the surface and modify the composition of the boundary layer (see
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Figure 1 | Springtime ozone distributions for 1984, 1995–2008 in the mid-
troposphere (3.0–8.0 km), and air mass source regions. a, Distributions of
springtime ozone measurements made in the troposphere between 3.0 and
8.0 km (stratospheric samples have been filtered out). The green line and data
points are the median, and the yellow data points are means. The upper and
lower blue lines (and data points) indicate the 95th and 5th percentiles. The
upper and lower red lines (and data points) indicate the 67th and 33rd
percentiles. Ozone sample sizes range from 1,663 in 1984 to 8,587 in 2006 (see
the Supplementary Information). Also shown are the ozone rates of increase for
1984–2008 and 1995–2008, as determined from the slope of the linear
regression. The range on the slope indicates the 95% confidence limit that the
slope lies within that range. Ozone data were gathered over mid-latitude western

North America (25u–55uN, 130u–90uW), as shown in the Supplementary
Information. The transport history of each ozone measurement was
determined by calculating a retroplume with the FLEXPART PDM (see
Methods and Supplementary Information). Every retroplume consisted of
40,000 back-trajectory particles released from the time and location of each
measurement and advected backwards in time for 15 days. b–d, The average
1984–2008 retroplume for three ranges of ozone measurements, expressed as
column residence times. e–g, The corresponding retroplume residence times in
the lowest 300 m of the atmosphere (the footprint layer). Ozone percentile
ranges: b and e, 0–33rd, c and f, 34th–66th; d and g, 67th–99th. Column and
footprint sample sizes are equal because every 15-day retroplume has some
degree of transport through the lowest 300 m of the atmosphere.
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review in the Supplementary Information). Our results support earlier
work that indicates that rising Asian ozone precursor emissions would
cause springtime surface ozone to increase in western North America
since the 1980s, despite decreasing domestic emissions14. Finally,
summertime extreme ozone events in many US urban areas have
decreased25, while some rural and marine sites in the western US show
increasing ozone11,18, possibly due to increasing background ozone.
Future studies are required to quantify free tropospheric ozone trends
above North America in other seasons.

METHODS SUMMARY
The ozone data were measured by: (1) electrochemical concentration cell

ozonesondes, accuracy: 610%; (2) an ozone lidar, accuracy: 65–25%; (3)

MOZAIC commercial aircraft, accuracy: 6(2 p.p.b.v. 1 2%); (4) a variety of

research aircraft flights with instrument accuracies that are generally better than

65% or 65 p.p.b.v.. The data were averaged over a 0.2u3 0.2u grid, at 200 m

vertical resolution and 1 min temporal resolution. All years have a sample size of

at least 1,200 measurements, indicating that the median values are within 62%

of the true ozone median value, at the 99% confidence level. The data have an

approximately normal distribution and the straight-line fits through the ozone

percentiles (Fig. 1a) are calculated using the least-squares method of simple

linear regression. The slopes of these lines indicate the increase of ozone per year

for 1984–2008. The P value indicates the statistical significance of the linear

relationship, determined by first calculating R, the correlation coefficient

between ozone and time. We then test the null hypothesis that R2 5 0 (no linear

relationship) using the standard F-statistic (ratio of the mean square regression
to the mean square residual). If the probability P associated with the F statistic is

small (P # 0.05), the null hypothesis is rejected with a confidence level $95%.

The FLEXPART Lagrangian particle dispersion model produced the 15-day

retroplumes for each ozone measurement with back-trajectory calculations

based upon global ECMWF wind fields with a temporal resolution of 3 h,

horizontal resolution of 1u3 1u, and 60 (90) vertical levels in 1984–2005

(2006–2008). Back-trajectory particles are transported by the resolved winds,

parameterized sub-grid motions, and a parameterized convection scheme.

Further details on FLEXPART and the ozone data sets are given in the

Supplementary Information.
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