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Stratospheric ozone
Important concepts in this lecture:
@ Chapman mechanism

@ Chemical ”families”
O,,HO,, NO,, CIO, and their reservoirs

@ Catalytic destruction of ozone
@ Heterogenous chemical reactions (multi-phase)

@ Polar stratospheric clouds (PSC)
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Stratospheric ozone — Southern hemisphere

BUV & TOMS total ozone

Octk 71 Oct. 72
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Stratospheric ozone — Northern hemisphere

TOMS total ozone

Paul Mewman
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Arctic ozone hole - Satellite data
SHTOMS

“ March 15, 1993

Y| Day number 74
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Stratospheric ozone — Northern hemisphere
Long term ozone observations at Arosa Switzerland
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Stratospheric ozone
The stratospheric ozone layer
@ Ozone: O,

@ ~ 3 mm thick if all ozone is concentrated to a layer at
ground level (=300 Dobson Units, DU).

@ Protects life on Earth by absorbing UV radiation from
the sun (AL <320 nm, UVb).

@ The ozone layer is vital for life on Earth.
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Depletion of stratospheric ozone — Effects

A depleted ozone layer casues a number of negative effects:

* Increased risk of skin cancer (e.g. malignant melanoma)
* Increased risk of skin burns

* Increased risk of eye injuries such as cataract (gra starr)
e Suppression of the immune system

* Increased risk of damage to natural ecosystems

* Increased risk of damage to crops and forests

A 10% thinning of the ozone layer is expected to resultin a
26% increase in the number of skin cancer cases.

The EU Environmental Agency (EEA) estimates that the levels
of ozone depleting compounds reached their highest values
in 1997, but the skin cancer prevalence will not reach its
highest levels until 2055, with 78 million new cases globally
per year!!
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Stratospheric ozone - Effects

UVc (200 <1 <280 nm) does not reach Earth’s surface
UVb (280 <A <320 nm) harmful
UVa (320 <12 <400 nm) less harmful

If the ozone layer is depleted by 1%, UVb at Earth”s surface
will increase by ~2%.

Thinning of the stratospheric ozone leads to increased
irradiation at Earth”s surface, in particular of UVb, which
leads to serious consequences for life on Earth.

UV radiation can break the DNA molecules forming the
genetic code, resulting in skin cancer (e.g. malignant
melanoma).
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Stratospheric ozone

UVc (200 < A <280 nm)

O, photolysis: A <240 nm

UVb (280 <A <320 nm)

O; photolysis: A <320 nm

UVa (320 <A <400 nm)
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The natural ozone layer

The natural ozone
layer before the
ozone hole.

Data from
measurements in
the 1960-ies.
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Ozone production in the stratosphere
Production of ozone occurs via photolysis of O,
(1) O,+hv>0+0 (A< 240 nm, UV)
2) O+0,+M>0,+M
Atomic oxygen O in its ground-level triplet state O(3P), very reactive
Photolysis is also a sink for ozone
O;+hv > O, +O(!D) (A< 320 nm, UV)
O(lD)+M>0+M (stabilization of O(*D) )
Atomic oxygen in an excited singlet state O(*D), extremely reactive
Net reaction for photolysis of ozone:

(3) O;+hv>0,+0

Photolysis is not a final sink for ozone since atomic oxygen
O Is recycled by reaction 2. Ozone destruction requires:

(4) O, + 0 > 20,
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Chapman mechanism (1930)

The Chapman mechanism for stratospheric ozone

(1) O,+hv=>0+0 (A< 240 nm)
(2) O+0,+M—->0;+M (2x) (fast)
(3) O,+hv->0,+0 (fast, A< 320 nm)

4  0,+0- 20,

O, famlly (odd oxygen molecules)

@ @
02 slow H o = fés)'t 03
- ‘ .......... P ‘ .......
slow
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O, according to the Chapman mechanism

Check that the short-lived O is in a steady state,
l.e. production and losses ~ constant over its lifetime.
Lifetime (ty) for O can be written

T5 = (mass in the reservoir)/(loss rate)

O, family (odd oxygen molecules)

k,J0Jo,[M] k,[0,]M] k,Cq n? S S :

Co, =0.21 mol/mol (mixing ratio of O,)
n, = Number concentration of air molecules
Lifetime (t5) ~ seconds or less.

Production of O varies on longer time scales.
= Steady state for [O].

Stratospheric ozone 14



O, according to the Chapman mechanism

O, family (odd oxygen molecules)

Steady state conditions for [O]. ) @,
— O production rate = O loss rate O siow : °<f(3—)t 0s
Only the fast reactions (2) and (3) are important. (T) """"
d slow
0= a[o] =K, [03]_ K, [O][Oz ][M ]:> k3[03] =k, [O][Oz ][M ]:>
0] Kk . ]s] .
[0.] k,Co,n - ;
[O;] >> [O] throughout the E 385
stratosphere. § |

0, ]=[0;]+[0]~[0,]

O, production and loss
determined by the slow N
reactions (1) and (4). i 1o o o

Atomic oxygen, atoms em™
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O, family (odd oxygen molecules)

O, lifetime | W % o o,
slow - 3) .
| | '--------(5-) --------
O, production determined by (1) | slow

O; loss determined by (4)
O, lifetime determined by (4)

Lifetime (t,) for O,

o] 1
° " 2k[ol0,] " 2,[0]

ALTITUDE, km

Steady-state conditions valid for O, in | | |
large parts of the stratosphere, but T 107 1ob
maybe not in the lower part.
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Chapman mechanism

— Ozone levels
Steady-state conditions can be

assumed for O, in large parts of the

stratosphere.
d
0=—[O,|=2
dt[ =2k

2k [0,] = 2k, [O

O,]-2k.[0][G.] P

[G.]P

Stratospheric O; levels (Chapman):

O] =i

Photolysis rates k; and k; vary with
altitude z in the stratosphere.
Both k,(z) and k;(z) depend on [O,].

Stratospheric ozone

O, family (odd oxygen molecules)

O,;+hv>0,+0
s0A< 320 NMmy

40 —

30 —

O,+hv>0+0

20
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|
| | |
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Chapman mechanism — Results

The Chapman mechanism can
explain qualitatively the O4
maximum at 20-30 km altitude.

O, production =2k,[O,] via reaction (1)
depends strongly on altitude.

Photolysis rate (k,) increases with
altitude while [O,] decreases due to
the pressure drop.

Observed natural ozone levels are
significantly lower than predicted
by the Chapman mechanism. =

Additional sinks needed!

Stratospheric ozone
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Catalytic ozone loss

Ozone can be consumed in catalytic processes, meaning

that the component causing ozone destruction is not
consumed.

(1) O;+hv—>0,+0

(2) O;+ X =2 0,+ X0

(3) O+X0O->0,+X (X conserved)
(Net) 20,;-> 30,

X can be different components
X =0OH : OH, HO, X=CIl:Cl,CIO
X =NO : NO, NO, X =Br : Br, BrO

Stratospheric ozone
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Catalytic ozone loss - HO,

Water vapour levels in the stratosphere are low (3-5 ppm)
Origin: transport from troposphere (H,O + O(*D) - 20H)

(5) O,+hv>0,+0 (initiation)
(6) OH+ O, > HO,+ 0, (propagation)
(7) HO, + O = OH + O, (propagation)

(Net) 20, -> 30,
HO, family: hydroxyl radical OH, hydroperoxyl radical HO,

Reaction (6) and (7) destroys ozone without consuming
HO, radicals (=catalysts).

The catalytic ozone loss cycle is broken when the HO, radical

chain is terminated by mutual destruction of two HO, radicals.

8 OH+HO,>H,O+O0, (termination)

Stratospheric ozone
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Catalytic ozone loss - HO,

HO, is an important O; sink, but it is not enough as only
complement to the Chapman mechanism to fully account
for the observed natural ozone levels (1960-ies).

Additional catalytic sinks are needed!

HO, family
:!“‘ S e
* f —> \ .
HZO > OH O, H02
4 T, O “““ ’
Tropopatisa ™
Biogeosphere
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Catalytic ozone loss - NO,

Nitrogen oxides in the stratophere originate from aircraft
(NO) and from Earth”s surface (N,0O).

(9) NO + O, > NO,+ 0O, (propagation)
(10) NO,+hv->NO+0O (photolysis, radical production)
(2) O+0,+M->0,+M

Null cycle! No net effect on ozone, but results in a fast exchange
between NO < NO,

NO, family
nitric oxide NO
nitrogen dioxide NO,

An additional O sink is needed to break the null cycle:
(11) NO, + O > NO + O,

Stratospheric ozone
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Catalytic ozone loss - NO,

(9) NO + O, -2 NO, + O,
(11) NO, + O - NO + O,
(Net) O,+ 0O = 20,

Reaction (11) destroys O, (=ozone) without consuming
NO, radicals (=catalysts).

Each cycle destroys two O, molecules (=2 O; molecules)!

Reaction (11) is limiting for the ozone loss. The alternative is
photolysis of NO,. Reaction (11) does not occur in the
troposphere where [O] is negligible.

-210]=-£[0,]= 2k, [No Jo)

Note! NO, (and HO,) results in a net loss of ozone in the
stratosphere but ozone production in the troposphere.

Stratospheric ozone
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Catalytic ozone loss - NO,

The catalytic cycle is broken by consuming NO, radicals.
(12) NO,+OH+ M > HNO;+ M (termination)

This happens during daytime, when OH is produced by photolysis (5).
Nighttime (no OH) the following reactions take place:

(13) NO, + O, > NO;+ O, (propagation)
(14) NO;+ NO,+M > N,O,+ M (termination)

Reaction (14) only happens nighttime since NO; is rapidly photolyzed
(15) NO,; + hv > NO, + O (photolysis)

Both HNO; (t=weeks) and N,O. (t=hours, days) are non-radicals.
Together, HNO; and N,O. form a NO, reservoir.

Stratospheric ozone 24



Catalytic ozone loss - NO,

The Og4 sinks attributable to NO, and HO, are sufficient as
complement to the Chapman mechanism to account for
the observed natural ozone levels (1970-ies).

Before the discovery of the ozone hole!
Paul Crutzen

shared the NO family
Nobel prize in NO\X< ..................... NE’)O ;servmr
Chemistry 1995 S,y
4 A?/)V 2%5 *

N,O oeoyL NO—>*NO,

..... 2 “’;

- /{.,.'. .............. OH,hVH N O‘Q;”‘
‘am ............... Y A

Tropopause ’

N,O stable in|the troposphere ».%.° Deposition

Biogeosphere

Stratospheric ozone
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Stratospheric ozone — Antarctica

The ozone hole was first
observed 1981 at Halley
Bay, Antarctica.

The resultats were so
astonishing that the
scientists first would not
believe their own data, and
waited to publish them until
1985.

J.C. Farman, B.G. Gardiner and J.D.
Shanklin.

Large losses of total ozone in
Antarctica reveal seasonal CIO,/NO,
Interaction

Nature, 1985

DDDDDDDDD
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The base at Halley
Bay is operated by the
British Antarctic
Survey and lies on a
sheet of ice in the
Weddel Sea. The
winter night at Halley
Bay lasts 105 days!

Halley Bay — Antarctica

Ozone hole firs observed
at Halley Bay, Antarctica,
around 1980. Data
published 1985.

Stratospheric ozone
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Stratospheric ozone hole

The ozone hole is largest
In October, when spring
comes to Antarctica.

The ozone layer can
disappear almost
completely at some
altitudes.

Data from ozone sondes
(balloons) launched from
the South Pole.
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Stratospheric ozone — Antarctica
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Stratospheric ozone - Antarctica

The extension
of the ozone
nole is defined
as the area
having < 220
DU (Dobson
Units) ozone.

This area Is
now as large
as the entire
North American
continent when
at maximum.
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Stratospheric ozone — CFCs
Ozone depleting substances:

CFC: ChloroFluoroCarbons (’hard CFC”)
HCFC: HydroChloroFluoroCarbons (”soft CFC”)
Halons, methyl bromide, certain solvents

Volatile compounds containing chlorine and bromine.

Extremely stable in the troposphere
=> They can be transported up to the stratosphere.

Use of these substances:
e Cooling medium
* Blower for plastics
* Dry cleaning fluid
e Cleaning detergent
* Solvents
* Propellant gas in spray cans

Stratospheric ozone
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NoO CONCENTRATION (ppbv)

Catalytic ozone loss — CFC

CFCs and HCFC are not found in nature.
Industrial-scale production started in the 1930-ies.
CFC has a lifetime in the atmosphere of 50-300 years.
Cl-levels in the atmosphere:
1980 level: 2 ppb (reached again 20507?)
Natural level: ~0.7 ppb (reached earliest 2100)

310 Z 03
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Catalytic ozone loss - ClIO,

CFCs are photolysed by UV radiation in the stratosphere.

(20) CF,Cl, + hv > CF,Cl| + Cl (initiation)
ClO, family: Cl and CIO (radicals)

(21) Cl+0O,->CIO+0,
(22) ClO+0->Cl+0,
(Net) O,+ 0 > 20,

Reaction (21) and (22) destroys O, (=ozone) without
consuming CIO, radicals (=catalysts).

Each cycle destroys two O, molecules (=2 O, molecules)!
Reaction (22) is limiting for the ozone loss.

_%[03] » —%[OX] =2k,, [CIO] [O]

Stratospheric ozone
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Catalytic ozone loss - ClIO,

The catalytic cycle is broken when CIO, radicals are comsumed.

(23) Cl+CH, > HCl+ CH,
(24) ClO + NO, + M > CINO;+ M (termination)

Both HCI (t=weeks) and CINO, (t~1 day) are non-radicals.
Together, HCland CINO, form a CIO, reservoir.

Cl, family: CIO,+ its CIO, reservoirs
Cl and CIO (radicals), HCland CINO, (non-radicals)

The reservoirs return to CIO,,

(25) HCl+ OH > Cl + H,0
(26) CINO; + hv > Cl + NO, (photolysis)

Stratospheric ozone
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Catalytic ozone loss - ClO,

1980-ies: The evidence that CFCs can seriously damage the
stratospheric ozone layer led to the signing of the Montreal
protocol in 1987. CFC production stopped in 1996.

Mario Molina, '
Sherwood ROW/and .......................................... S /Clox reservolir
shared the Nobel '|-| CI CI NO; : ™.
prize in Chemistry | = ™., k
in 1995 5 H

CI y family

C)
CFC *:x C| 2= CIO ;
LT '\010

X

Tropopause

°e e Deposition

Biogeosphere
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Catalytic ozone loss - CIO

The catalytic cycle with CIO, radicals was rewarded the
Nobel prize but could not explain the ozone hole !!

Early spring in Antarctica is relatively dark and levels of O are low.

(11) NO, + O > NO + O, and...
(22) ClO+0->Cl+0, ...are not efficient !

Yet another catalytic cycle involving CIO is needed:

(27) CIO+ClIO+M > CIOOCI+M  (CIO dimer)
(28) CIOOCI+ hv > + CIOO + Cl (split in "wrong” place)
(29) CIOO+M->Cl+0O,+M
(30) Cl+0O,->ClO+0, (2X)
(Net) 20, > 30,

Reaction (27) is limiting for the ozone loss, which makes the loss rate
proportional to [ClO]?, as opposed to the CIO, mechanism (22).
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Catalytic ozone loss - CIO

Why are the levels of ClIO radicals so high during spring in
Antarctica?

Heterogeneous chemical processes (multiple phases involved)
constitute an efficient sink for the CIO, reservoir.
Polar stratospheric clouds (PSC) provide a surface.

PSC
(32) CINO,+ HCl> Cl, + HNO,
(33) Cl, + hv > 2Cl

Reaction (32) is so fast that either all CINO; or HCI s titrated out.

The ratio CIO, /Cl, is normally ~0.1, but can reach 1 during early

spring.
The CIO, reservoir becomes completely empty !

Polar stratospheric clouds (PSC) are essential in forming of
the ozone hole.
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Stratospheric ozone

Polar stratospheric clouds (PSC) are formed at tempera-
tures lower than ~ 197 K, which is more frequent at the
South Pole than at the North Pole.
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Temperatures in the stratosphere

Minimum temperatures at 50 hPa

Antarctic, 50-90° S Arctic, 50-90° N

50-90°S Minimum Temperature

HNO,=Bppby, HO=dppmv 50 IhPa L 50-90°N Minimum Temperature
50 hPa

|HN03= ? pPpbv, ||'|20 =4 ?pmv ‘

220

210 ] - 10—

¥ 200 - 200

pe | PSC Type | PSC
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190
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Stratospheric ozone

Hydrated nitric acid (HNO,) |
forms ice crystals at higher
temperatures compared to pure

water 2 more PSC.

HNO, .H,0

Nitric Acid Monohydrate (NAM)

HNO, .3H,0

Nitric Acid Trihydrate (NAT)

HNO, .2H,0

Nitric Acid Dihydrate (NAD)
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HNO4 Vapor Pressure (torr)
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H,O Vapor Pressure (torr)
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Stratospheric ozone

The polar vortex Is formed - Formation

as the sun sets in Antarctica. ¢ < PSC f%p
Polar stratospheric clouds ¢ | —~——
(PSC) are formed.

ClO, reservolir is emptied.

Temperature

SEP
Crlz + CID + C]}ZOZ

Abundance

Cl, Cl, are released = CIO
and CIOOCI form. Ay T op

When the sun rises again
over Antarctica CIOOCI is
photolyzed and the catalytic

sedimentation

of HNOs3-containing
PSCs

Abundance

-
CIO cycle starts. MAY JuL SEP NOV
@ ‘ Ozone
[HNO;] are very low due to £
sedimentation =2 no new 5
source of NO, och CINO;.  ~ ﬁ -
MAY JUL SEP NOV
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Stratospheric Ozone - Effect of the Montreal Protocol
Effect of protocols

Effective
stratospheric

, Montreal
chlorine
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Stratospheric ozone - Recovery

« Large inter-annual variations driven by dynamic circulation

patterns make it hard to find significant trends in
stratospheric ozone recovery.

 Significant trends only seen over Antarctica in September

d Total ozone trend 1979-2015 (90° S—-60° S, Sept)
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Total ozone change (DU)

Stratospheric ozone - Recovery

Global total czone

—4 Decreasing ODS (ozone-depleting
substances) - recovery of ozone

10—

CH, only

Increased GHG (CO2 & CHa4) cause
cooling in the upper stratosphere -
slower gas-phase ozone destruction
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