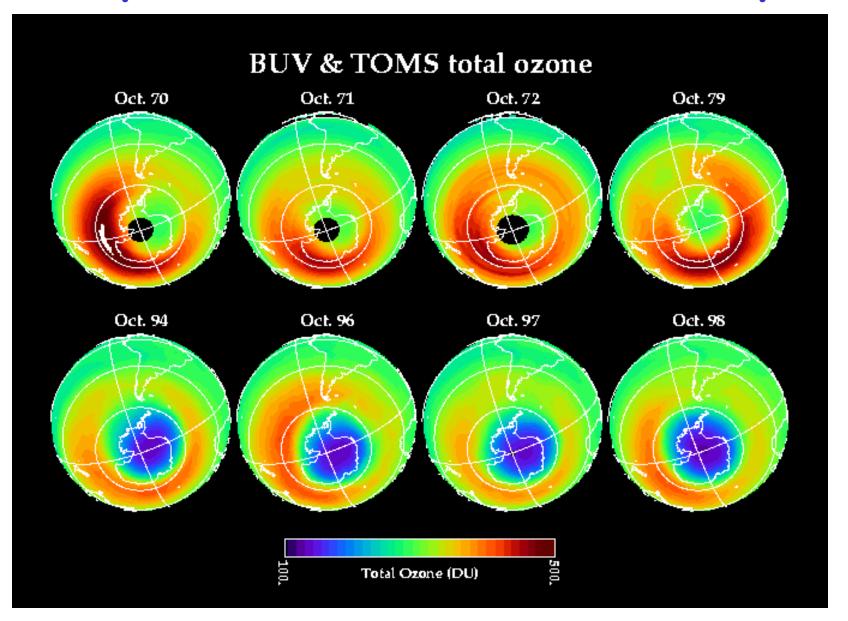
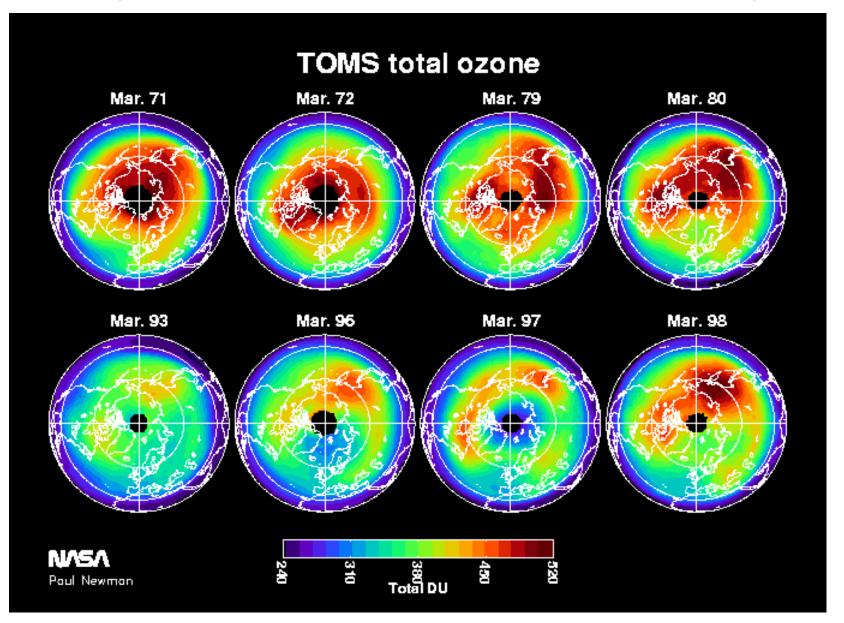


Atmospheric Chemistry Stratospheric ozone

Pontus Roldin


Avd. för Kärnfysik Fysiska institutionen Lunds universitet

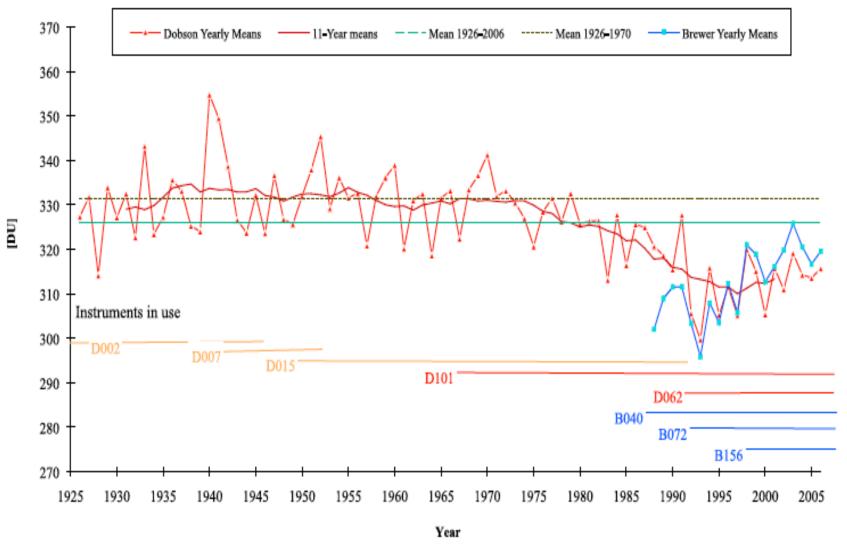
Stratospheric ozone


Important concepts in this lecture:

- Chapman mechanism
- Chemical "families"
 O_x, HO_x, NO_x, ClO_x and their reservoirs
- Catalytic destruction of ozone
- Heterogenous chemical reactions (multi-phase)
- Polar stratospheric clouds (PSC)

Stratospheric ozone – Southern hemisphere

Stratospheric ozone – Northern hemisphere



Arctic ozone hole - Satellite data

Stratospheric ozone – Northern hemisphere

Long term ozone observations at Arosa Switzerland

Stratospheric ozone

The stratospheric ozone layer

- **Ozone:** O₃
- ~ 3 mm thick if all ozone is concentrated to a layer at ground level (=300 Dobson Units, DU).
- Protects life on Earth by absorbing UV radiation from the sun (λ < 320 nm, UVb).
- The ozone layer is vital for life on Earth.

Stratospheric ozone - Effects

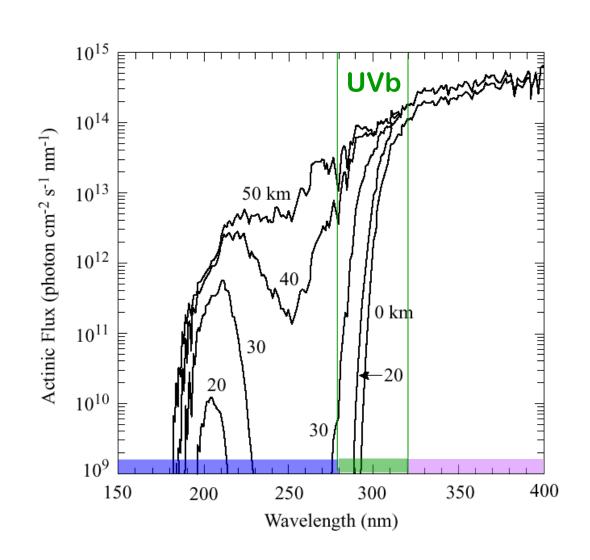
UVc (200 < λ < 280 nm) does not reach Earth's surface UVb (280 < λ < 320 nm) harmful UVa (320 < λ < 400 nm) less harmful

If the ozone layer is depleted by 1%, UVb at Earth's surface will increase by ~2%.

Thinning of the stratospheric ozone leads to increased irradiation at Earth's surface, in particular of UVb, which leads to serious consequences for life on Earth.

UV radiation can break the DNA molecules forming the genetic code, resulting in skin cancer (e.g. malignant melanoma).

Stratospheric ozone

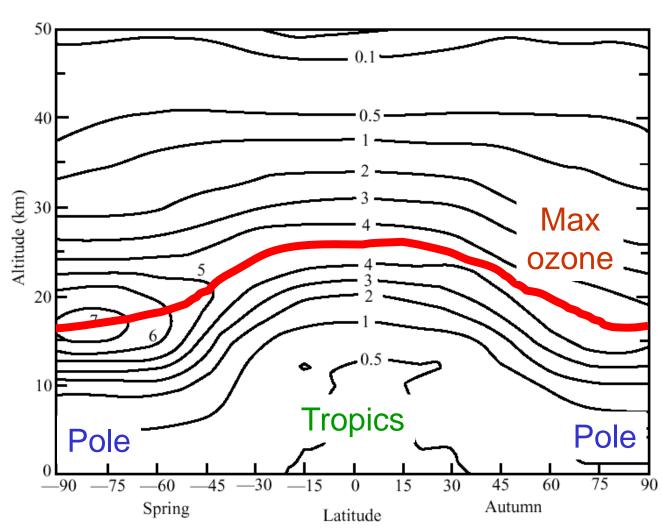

UVc (200 < λ < 280 nm)

 O_2 photolysis: λ < 240 nm

UVb (280 < λ < 320 nm)

 O_3 photolysis: λ < 320 nm

UVa (320 < λ < 400 nm)



The natural ozone layer

The natural ozone layer before the ozone hole.

Data from measurements in the 1960-ies.

Unit: 10¹² molecules O₃ cm⁻³

Ozone production in the stratosphere

Production of ozone occurs via photolysis of O₂

(1)
$$O_2 + h\nu \rightarrow O + O$$

 $(\lambda < 240 \text{ nm}, \text{UV})$

(2)
$$O + O_2 + M \rightarrow O_3 + M$$

Atomic oxygen O in its ground-level triplet state $O(^3P)$, very reactive

Photolysis is also a sink for ozone

$$O_3 + h\nu \rightarrow O_2 + O(^1D)$$
 ($\lambda < 320 \text{ nm, UV}$)

$$O(^{1}D) + M \rightarrow O + M$$
 (stabilization of $O(^{1}D)$)

Atomic oxygen in an excited singlet state O(¹D), extremely reactive Net reaction for photolysis of ozone:

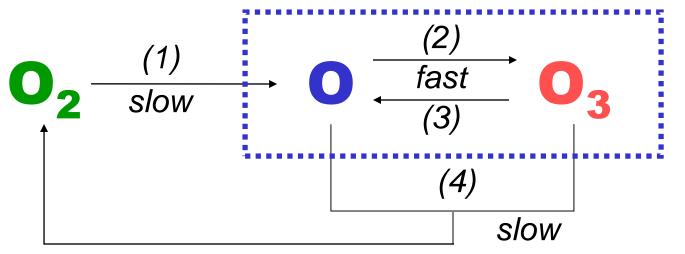
(3)
$$O_3 + hv \rightarrow O_2 + O_3$$

Photolysis is not a final sink for ozone since atomic oxygen O is recycled by reaction 2.

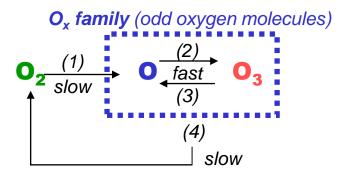
Ozone destruction requires: (4)
$$O_3 + O \rightarrow 2O_2$$

Chapman mechanism (1930)

The Chapman mechanism for stratospheric ozone


(1)
$$O_2 + hv \rightarrow O + O$$
 ($\lambda < 240 \text{ nm}$)

(2)
$$O + O_2 + M \rightarrow O_3 + M$$
 (2x) (fast)


(3)
$$O_3 + hv \rightarrow O_2 + O$$
 (fast, $\lambda < 320 \text{ nm}$)

$$(4) \qquad O_3 + O \rightarrow 2O_2$$

O_x family (odd oxygen molecules)

Task: Derive a simple expression for how the [O₃] varies in the stratosphere according to the Chapman mechanism

Step 1: Show that ○ has a sufficiently short lifetime in the stratosphere to assumed steady state d[O]/dt≈0

Step 1

Check that the short-lived O is in a steady state,

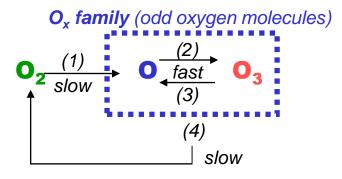
i.e. production and losses ~ constant over its lifetime.

Lifetime (τ_O) for O can be written

 τ_O = (mass in the reservoir)/(loss rate)

$$\tau_{O} = \frac{[O]}{k_{2}[O][O_{2}][M]} = \frac{1}{k_{2}[O_{2}][M]} = \frac{1}{k_{2}C_{O_{2}}n_{a}^{2}}$$

 $C_{O_2} = 0.21 \text{ mol/mol (mixing ratio of O_2)}$


 n_a = Number concentration of air molecules

Lifetime (τ_o) ~ seconds or less.

Production of O varies on longer time scales.

 \Rightarrow Steady state for [O].

Task: Derive a simple expression for how the [O₃] varies in the stratosphere according to the Chapman mechanism

Step 2: Use the steady state condition $(d[O]/dt\approx0)$ to show that $[O_3]>>[O]$

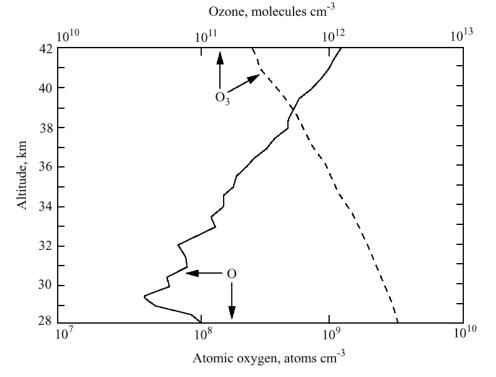
Step 2

Steady state conditions for [O].

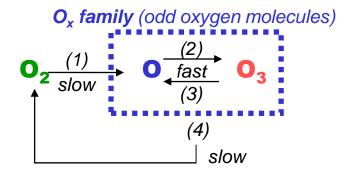
 \Rightarrow O production rate = O loss rate Only the fast reactions (2) and (3) are important.

$$\begin{array}{c|c}
\bullet & (1) \\
\hline
\bullet & slow
\end{array}$$

O_x family (odd oxygen molecules)


$$0 = \frac{d}{dt}[O] = k_3[O_3] - k_2[O][O_2][M] \Rightarrow k_3[O_3] = k_2[O][O_2][M] \Rightarrow$$

$$\frac{[O]}{[O_3]} = \frac{k_3}{k_2 C_{O_2} n_a^2} \Longrightarrow [O_3] >> [O]$$


 $[O_3] >> [O]$ throughout the stratosphere.

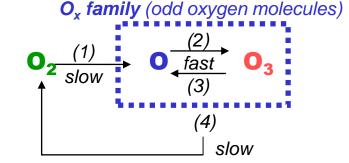
$$[O_x] = [O_3] + [O] \approx [O_3]$$

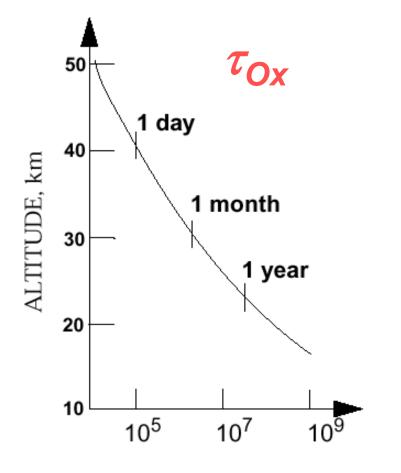
 O_3 production and loss determined by the slow reactions (1) and (4).

Task: Derive a simple expression for how the [O₃] varies in the stratosphere according to the Chapman mechanism

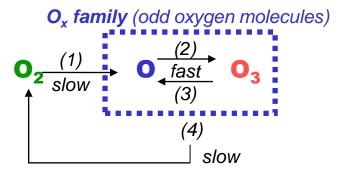
Step 3: Derive an expression for the $O_x \equiv (O_3 + O)$ lifetime in the stratosphere.

Step 3


O_x lifetime


O₃ production determined by (1)
O₃ loss determined by (4)
O₃ lifetime determined by (4)

Lifetime (τ_{Ox}) for O_x


$$\tau_{O_x} = \frac{\begin{bmatrix} O_x \end{bmatrix}}{2k_A \begin{bmatrix} O \end{bmatrix} \begin{bmatrix} O_3 \end{bmatrix}} \approx \frac{1}{2k_A \begin{bmatrix} O \end{bmatrix}}$$

Steady-state conditions valid for O_x in large parts of the stratosphere, but maybe not in the lower part.

Task: Derive a simple expression for how the [O₃] varies in the stratosphere according to the Chapman mechanism

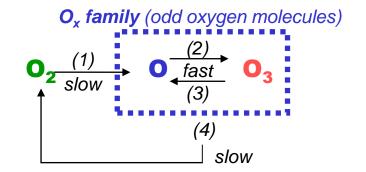
Step 4: Finally use the steady state assumption for O_x and the expression derived from step 2: $\frac{[0]}{[o_3]} = \frac{k_3}{k_2 C_{o_2} n_a^2}$

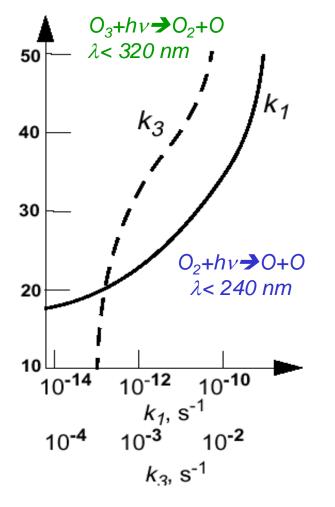
Step 4

Chapman mechanism – Ozone levels

Steady-state conditions can be assumed for O_x in large parts of the stratosphere.

$$0 = \frac{d}{dt} [O_x] = 2k_1 [O_2] - 2k_4 [O] [O_3] \triangleright$$


$$2k_1 [O_2] = 2k_4 [O] [O_3] \triangleright$$

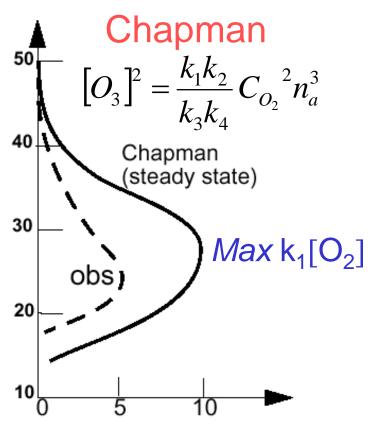

Stratospheric O₃ levels (Chapman):

$$[O_3]^2 = \frac{k_1 k_2}{k_3 k_4} C_{O_2}^2 n_a^3$$

Photolysis rates k_1 and k_3 vary with altitude z in the stratosphere.

Both $k_1(z)$ and $k_3(z)$ depend on $[O_3]$.

Chapman mechanism – Results


The Chapman mechanism can explain qualitatively the O_3 maximum at 20-30 km altitude.

 O_x production =2 $k_1[O_2]$ via reaction (1) depends strongly on altitude.

Photolysis rate (k_1) increases with altitude while $[O_2]$ decreases due to the pressure drop.

Observed natural ozone levels are significantly lower than predicted by the Chapman mechanism. ⇒

Additional sinks needed!

[O₃], 10¹² molecules cm⁻² s⁻¹

Catalytic ozone loss

Ozone can be consumed in catalytic processes, meaning that the component causing ozone destruction is not consumed.

$$(1) O_3 + hv \rightarrow O_2 + O$$

$$(2) O_3 + X \rightarrow O_2 + XO$$

(3)
$$O + XO \rightarrow O_2 + X$$
 (X conserved)

(Net)
$$2O_3 \rightarrow 3O_2$$

X can be different components

$$X = OH : OH, HO_2$$
 $X = CI : CI, CIO$

$$X = NO : NO, NO2$$
 $X = Br : Br, BrO$

Catalytic ozone loss - HO_x

Water vapour levels in the stratosphere are low (3-5 ppm) Origin: transport from troposphere ($H_2O + O(^1D) \rightarrow 2OH$)

(5)
$$O_3 + hv \rightarrow O_2 + O$$
 (initiation)

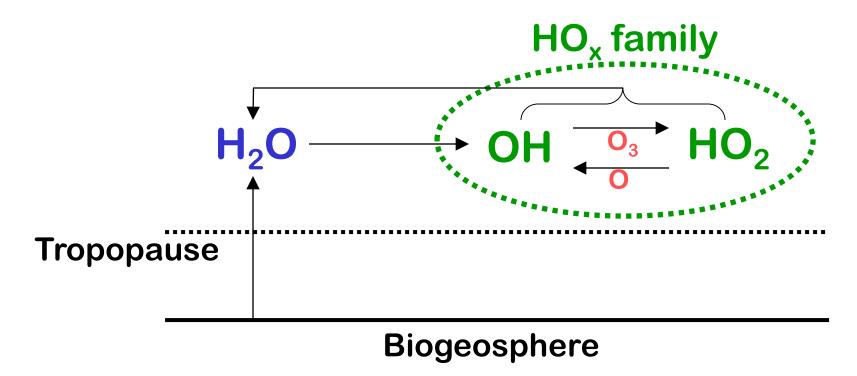
(6)
$$OH + O_3 \rightarrow HO_2 + O_2$$
 (propagation)

(7)
$$HO_2 + O \rightarrow OH + O_2$$
 (propagation)

 $(Net) 2O_3 \rightarrow 3O_2$

HO_x family: hydroxyl radical OH, hydroperoxyl radical HO₂

Reaction (6) and (7) destroys ozone without consuming HO_x radicals (=catalysts).


The catalytic ozone loss cycle is broken when the HO_x radical chain is terminated by mutual destruction of two HO_x radicals.

(8)
$$OH + HO_2 \rightarrow H_2O + O_2$$
 (termination)

Catalytic ozone loss - HO_x

 HO_x is an important O_3 sink, but it is not enough as only complement to the Chapman mechanism to fully account for the observed natural ozone levels (1960-ies).

Additional catalytic sinks are needed!

Catalytic ozone loss - NO_x

Nitrogen oxides in the stratophere originate from aircraft (NO) and from Earth's surface (N₂O).

(9)
$$NO + O_3 \rightarrow NO_2 + O_2$$
 (propagation)
(10) $NO_2 + h\nu \rightarrow NO + O$ (photolysis, radical production)
(2) $O + O_2 + M \rightarrow O_3 + M$

Null cycle! No net effect on ozone, but results in a fast exchange between NO ↔ NO₂

NO_x family

nitric oxide NO nitrogen dioxide NO₂

An additional O sink is needed to break the null cycle:

$$(11) \qquad NO_2 + O \rightarrow NO + O_2$$

Catalytic ozone loss - NO_x

(9)
$$NO + O_3 \rightarrow NO_2 + O_2$$

(11) $NO_2 + O \rightarrow NO + O_2$
(Net) $O_3 + O \rightarrow 2O_2$

Reaction (11) destroys O_x (=ozone) without consuming NO_x radicals (=catalysts).

Each cycle destroys two O_x molecules (=2 O_3 molecules)!

Reaction (11) is limiting for the ozone loss. The alternative is photolysis of NO₂. Reaction (11) is not important in the troposphere where [O] is negligible low.

$$-\frac{d}{dt}[O_3] \approx -\frac{d}{dt}[O_x] = 2k_{11}[NO_2][O]$$

Note! NO_x (and HO_x) results in a net loss of ozone in the stratosphere but ozone production in the troposphere.

Catalytic ozone loss - NO_x

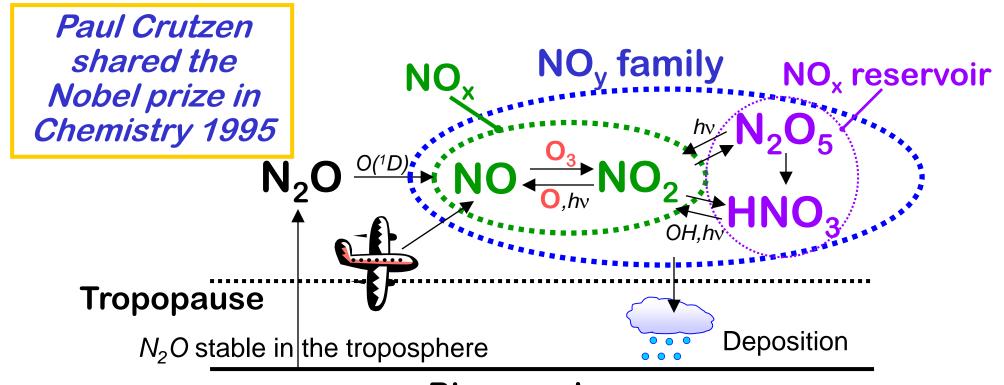
The catalytic cycle is broken by consuming NO_x radicals.

(12)
$$NO_2 + OH + M \rightarrow HNO_3 + M$$
 (termination)

This happens during daytime, when OH is produced by photolysis. Nighttime (no OH) the following reactions take place:

(13)
$$NO_2 + O_3 \rightarrow NO_3 + O_2$$
 (propagation)
(14) $NO_3 + NO_2 + M \rightarrow N_2O_5 + M$ (termination)

Reaction (14) only happens nighttime since
$$NO_3$$
 is rapidly photolyzed (15) $NO_3 + hv \rightarrow NO_2 + O$ (photolysis)


Both HNO₃ (τ =weeks) and N₂O₅ (τ =hours, days) are non-radicals.

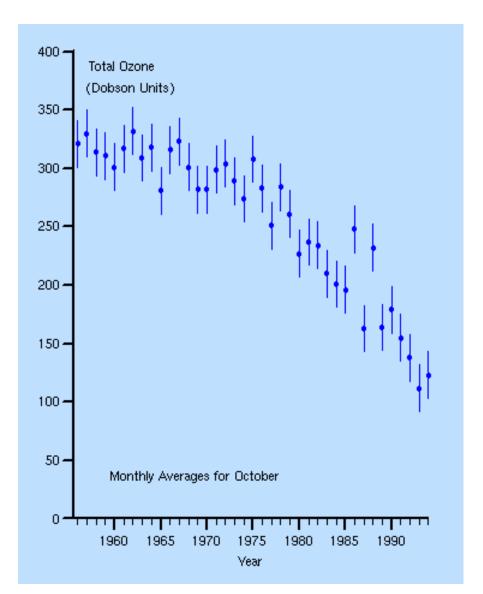
Together, HNO_3 and N_2O_5 form a NO_x reservoir.

Catalytic ozone loss – NO_x

The O_3 sinks attributable to NO_x and HO_x are sufficient as complement to the Chapman mechanism to account for the observed natural ozone levels (1970-ies).

Before the discovery of the ozone hole!

Stratospheric ozone – Antarctica


The ozone hole was first observed 1981 at Halley Bay, Antarctica.

The resultats were so astonishing that the scientists first would not believe their own data, and waited to publish them until 1985.

J.C. Farman, B.G. Gardiner and J.D. Shanklin.

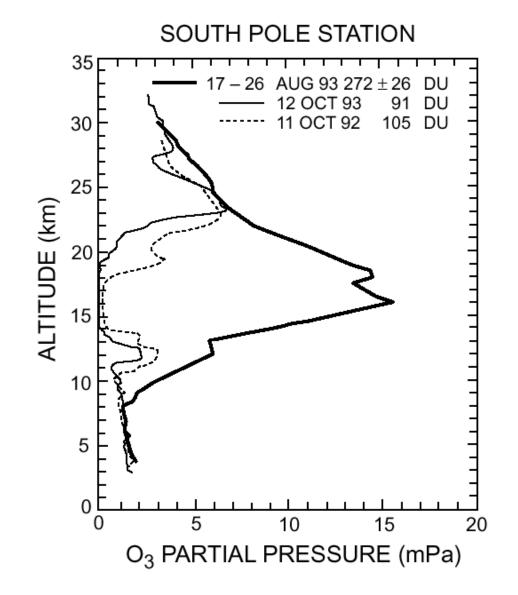
Large losses of total ozone in Antarctica reveal seasonal ClO_x/NO_x interaction

Nature, 1985

Halley Bay – Antarctica

Ozone hole firs observed at Halley Bay, Antarctica, around 1980. Data published 1985.

The base at Halley
Bay is operated by the
British Antarctic
Survey and lies on a
sheet of ice in the
Weddel Sea. The
winter night at Halley
Bay lasts 105 days!

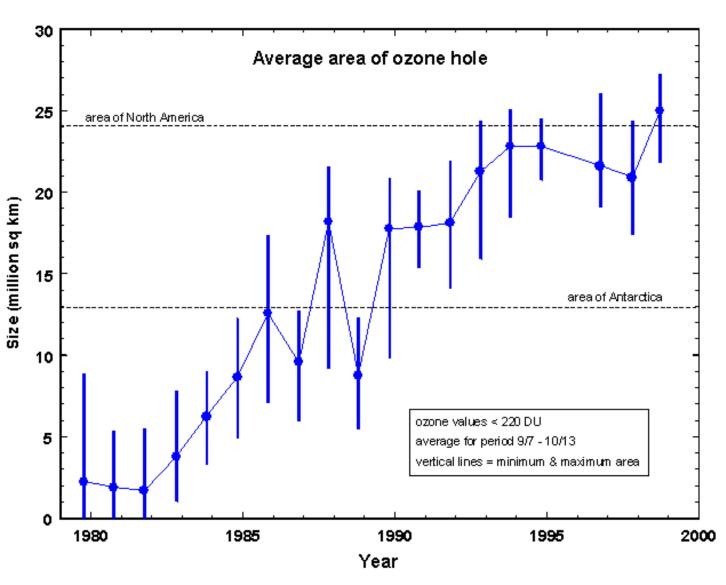


Stratospheric ozone hole


The ozone hole is largest in October, when spring comes to Antarctica.

The ozone layer can disappear almost completely at some altitudes.

Data from ozone sondes (balloons) launched from the South Pole.


Stratospheric ozone – Antarctica

Stratospheric ozone – Antarctica

The extension of the ozone hole is defined as the area having < 220 DU (Dobson Units) ozone.

This area is now as large as the entire North American continent when at maximum.

Stratospheric ozone – CFCs

Ozone depleting substances:

CFC: ChloroFluoroCarbons ("hard CFC")

HCFC: HydroChloroFluoroCarbons ("soft CFC")

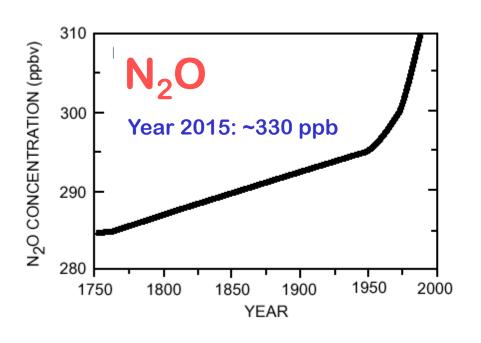
Halons, methyl bromide, certain solvents

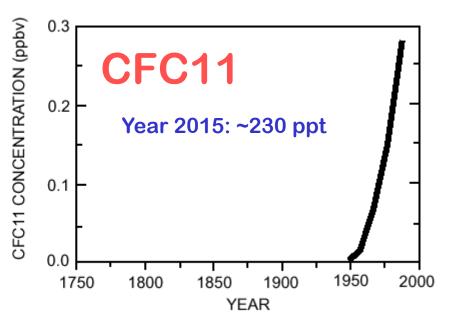
Volatile compounds containing chlorine and bromine.

Extremely stable in the troposphere

→ They can be transported up to the stratosphere.

Use of these substances:


- Cooling medium
- Blower for plastics
- Dry cleaning fluid
- Cleaning detergent
- Solvents
- Propellant gas in spray cans


Catalytic ozone loss – CFC

CFCs and HCFC are not found in nature. Industrial-scale production started in the 1930-ies. CFC has a lifetime in the atmosphere of 50-300 years. CI-levels in the atmosphere:

1980 level: 2 ppb (reached again 2050?)

Natural level: ~0.7 ppb (reached earliest 2100)

Catalytic ozone loss - CIO_x

CFCs are photolysed by UV radiation in the stratosphere.

(20)
$$CF_2CI_2 + h\nu \rightarrow CF_2CI + CI$$
 (initiation)

CIO_x family: CI and CIO (radicals)

(21)
$$CI + O_3 \rightarrow CIO + O_2$$

(22) $CIO + O \rightarrow CI + O_2$

(Net)
$$O_3 + O \rightarrow 2O_2$$

Reaction (21) and (22) destroys O_x (=ozone) without consuming CIO_x radicals (=catalysts).

Each cycle destroys two O_x molecules (=2 O₃ molecules)!

Reaction (22) is limiting for the ozone loss (see Excersise 10.4).

$$-\frac{d}{dt}[O_3] \gg -\frac{d}{dt}[O_x] = 2k_{22}[ClO][O]$$

Catalytic ozone loss - CIO_x

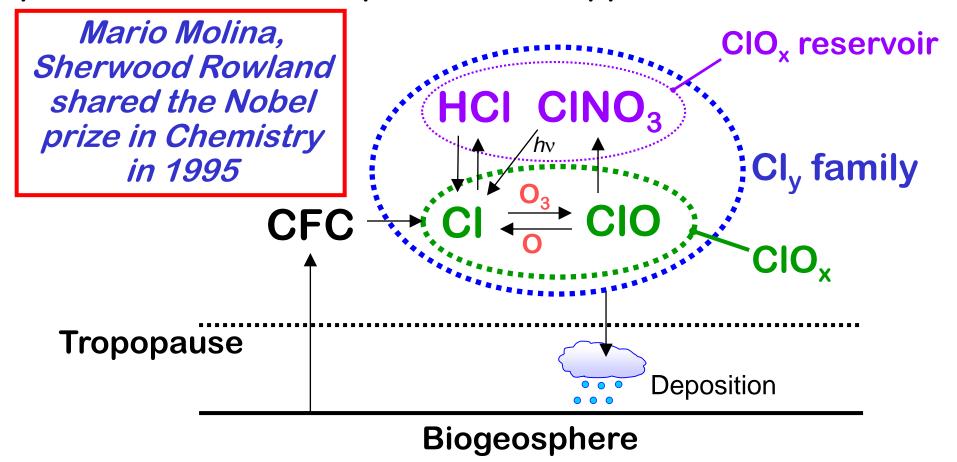
The catalytic cycle is broken when CIO_x radicals are comsumed.

(23)
$$CI + CH_4 \rightarrow HCI + CH_3$$

(24) $CIO + NO_2 + M \rightarrow CINO_3 + M$ (termination)

Both HCl (τ=weeks) and ClNO₃ (τ≈1 day) are non-radicals.

Together, HCl and ClNO₃ form a ClO_x reservoir.


Cl_y family: ClO_x+ its ClO_x reservoirs Cl and ClO (radicals), HCl and ClNO₃ (non-radicals)

The reservoirs return to CIO_x

(25)
$$HCI + OH \rightarrow CI + H_2O$$

(26) $CINO_3 + hv \rightarrow CI + NO_3$ (photolysis)

Catalytic ozone loss – CIO_x

1980-ies: The evidence that CFCs can seriously damage the stratospheric ozone layer led to the signing of the Montreal protocol in 1987. CFC production stopped in 1996.

Catalytic ozone loss - CIO

The catalytic cycle with CIO_x radicals was rewarded the Nobel prize but could not explain the ozone hole!!

Early spring in Antarctica is relatively dark and levels of O are low.

- (11) $NO_2 + O \rightarrow NO + O_2$ and...
- (22) $ClO + O \rightarrow Cl + O_2$...are not efficient!

Yet another catalytic cycle involving CIO is needed:

- (27) $CIO + CIO + M \rightarrow CIOOCI + M$ (CIO dimer)
- (28) $ClOOCl + h\nu \rightarrow ClOO + Cl$ (split in "wrong" place)
- $(29) \quad \text{CIOO} + \text{M} \rightarrow \text{CI} + \text{O}_2 + \text{M}$
- (30) $Cl + O_3 \rightarrow ClO + O_2$ (2x)
- (Net) $2O_3 \rightarrow 3O_2$

Reaction (27) is limiting for the ozone loss, which makes the loss rate proportional to $[CIO]^2$, as opposed to the CIO_x mechanism (22).

Catalytic ozone loss - CIO

Why are the levels of CIO radicals so high during spring in Antarctica?

Heterogeneous chemical processes (multiple phases involved) constitute an efficient sink for the CIO_x reservoir.

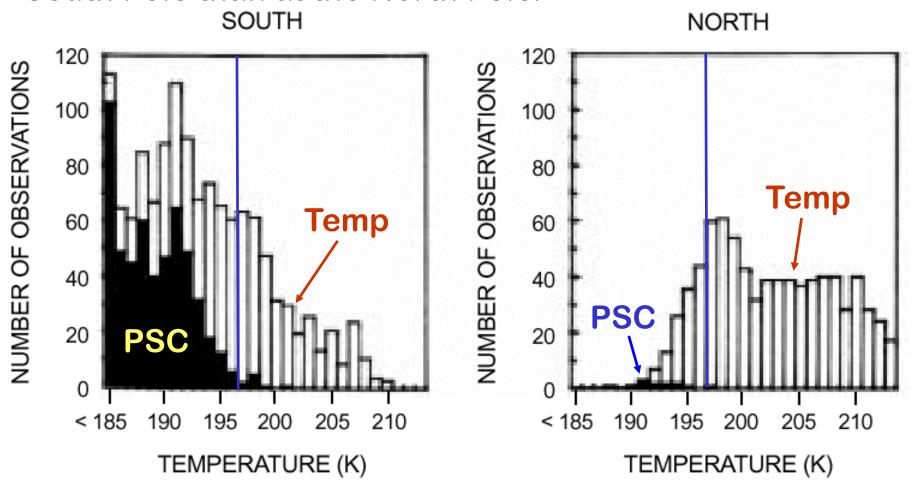
Polar stratospheric clouds (PSC) provide a surface.

PSC

(32)
$$CINO_3 + HCI \rightarrow CI_2 + HNO_3$$

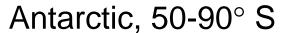
(33)
$$Cl_2 + h\nu \rightarrow 2Cl$$

Reaction (32) is so fast that either all CINO₃ or HCl is titrated out.

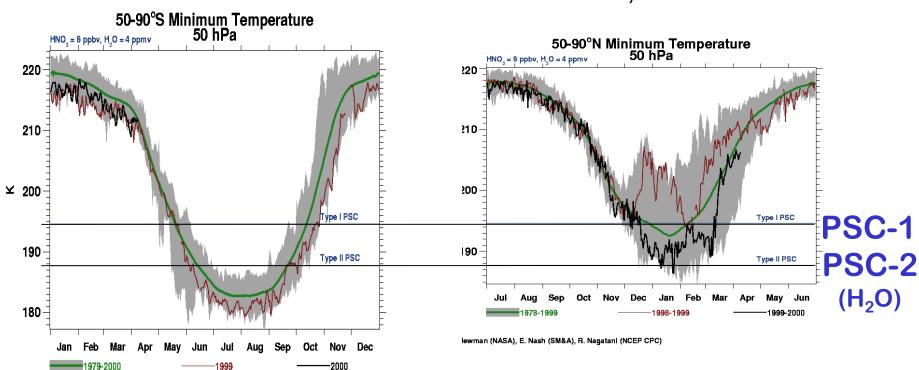

The ratio ClO_x/Cl_y is normally ~0.1, but can reach 1 during early spring. $Cl_v \equiv$ total reactive chlorine.

The CIO_x reservoir becomes completely empty!

Polar stratospheric clouds (PSC) are essential in forming of the ozone hole.


Stratospheric ozone

Polar stratospheric clouds (PSC) are formed at temperatures lower than ~ 197 K, which is more frequent at the South Pole than at the North Pole.

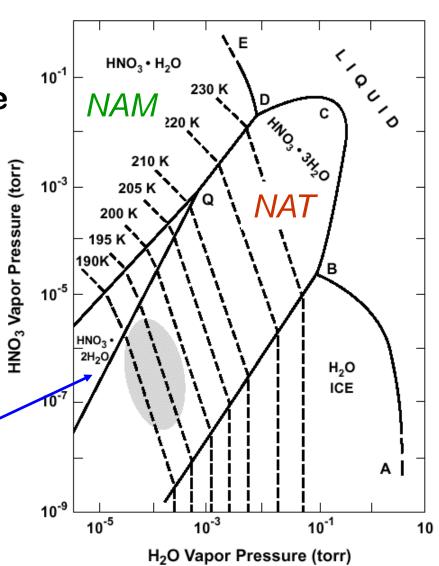


Temperatures in the stratosphere

Minimum temperatures at 50 hPa

Arctic, 50-90° N

P. Newman (NASA), E. Nash (SM&A), R. Nagatani (NCEP CPC)


Stratospheric ozone

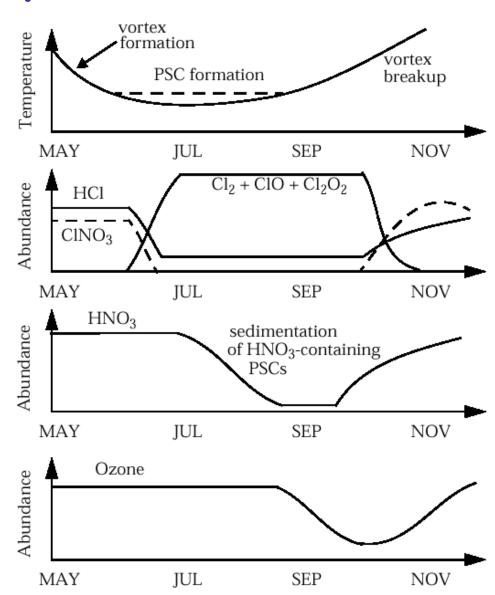
Hydrated nitric acid (HNO₃) forms ice crystals at higher temperatures compared to pure water → more PSC.

HNO₃ • H₂O Nitric Acid Monohydrate (NAM)

HNO₃.3H₂O Nitric Acid Trihydrate (NAT)

HNO₃·2H₂O Nitric Acid Dihydrate (NAD)

Stratospheric ozone

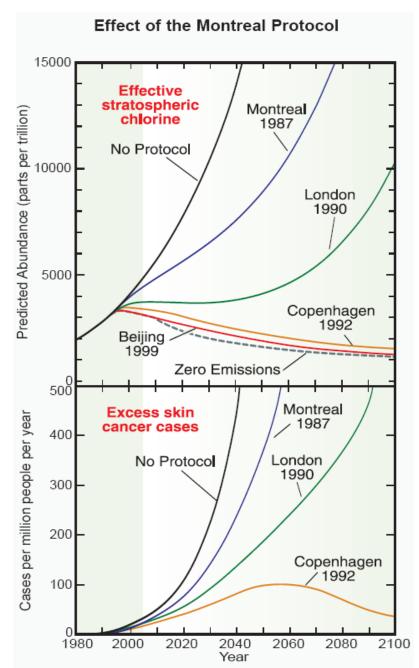

The polar vortex is formed as the sun sets in Antarctica. Polar stratospheric clouds (PSC) are formed.

CIO_x reservoir is emptied.

CI, CI_2 are released \rightarrow CIO and CIOOCI form.

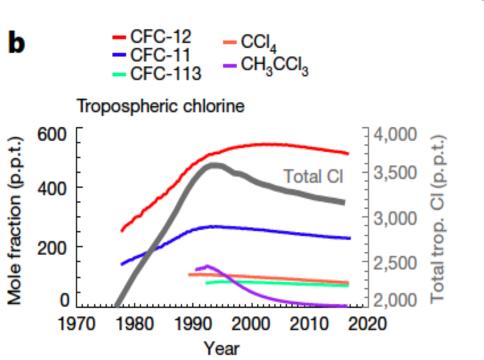
When the sun rises again over Antarctica *Cloocl* is photolyzed and the catalytic *Clo* cycle starts.

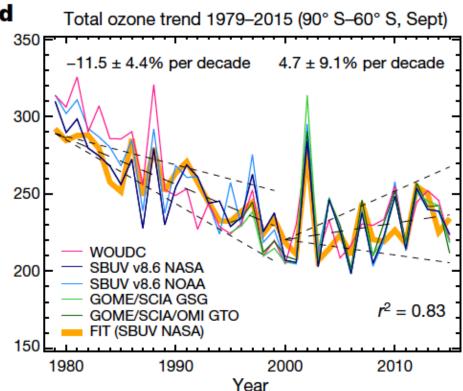
[HNO_3] are very low due to sedimentation \rightarrow no new source of NO_2 och $CINO_3$.

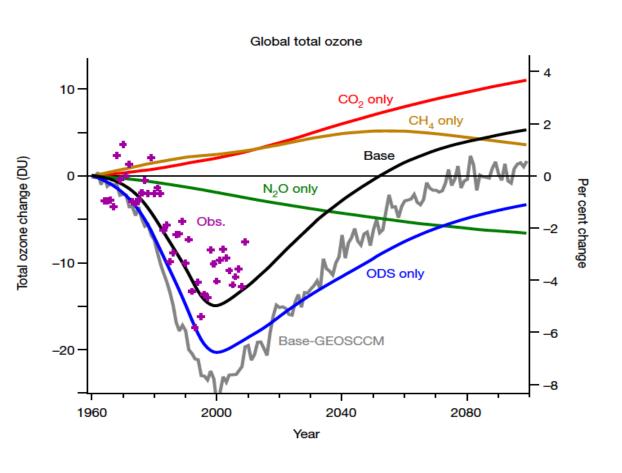

Stratospheric ozone – Effect of protocols

Stratospheric chlorine levels

Already decreasing owing to the protocols!


Number of extra cases of skin cancer


Increasing until 2055 despite the protocols!


Stratospheric ozone - Recovery

- Large inter-annual variations driven by dynamic circulation patterns make it hard to find significant trends in stratospheric ozone recovery.
- Significant trends only seen over Antarctica in September

Stratospheric ozone - Recovery

Decreasing ODS (ozone-depleting substances) → recovery of ozone

Increased GHG (CO₂ & CH₄) cause cooling in the upper stratosphere → slower gas-phase ozone destruction

Increased N2O → increase [NOx] → increased ozone depleation