

Atmospheric Chemistry Oxidizing capacity of the troposphere

Pontus Roldin Div. Nuclear Physics Dep. Physics Lund University

Tropospheric chemistry Background

The troposphere is a chemical reservoir that is fairly well separated from the stratosphere.

- The mixing time in the troposphere is 1-2 months within each hemisphere.
- Chemical substances with a lifetime shorter than ~1 year are transformed within the troposphere.

Tropospheric chemistry Background

The present day atmosphere is strongly affected by human activities.

- Burning of fossil fuel and biomass emitts large amount of toxic carbon monoxide (CO) and hydrocarbons.
- Due to high temperatures in the combustion process, NO is also produced and emitted to the atmosphere:

 $0_{2} \stackrel{\text{heat}}{\longleftrightarrow} 0 + 0$ $0 + N_{2} \Leftrightarrow \text{N0} + N$ $N + 0_{2} \Leftrightarrow \text{N0} + 0$

- Livestock, rice paddies and natural gas prod. emitt the GHG methane (CH₄).
- What are the consequences of these emissions?

Tropospheric chemistry

Scavenging of toxic CO by the detergent of the atmosphere, the hydroxyl radical OH.

 $\begin{array}{rcl} \mathsf{CO} + \mathsf{OH} & \rightarrow & \mathsf{CO}_2 + \mathsf{H} \\ \mathsf{H} + \mathsf{O}_2 + \mathsf{M} & \rightarrow & \mathsf{HO}_2 + \mathsf{M} & \text{(very fast)} \\ \mathsf{HO}_2 + \mathsf{NO} & \rightarrow & \mathsf{OH} + \mathsf{NO}_2 \\ \mathsf{NO}_2 + h\nu & \rightarrow & \mathsf{NO} + \mathsf{O} \\ \mathsf{O} + \mathsf{O}_2 + \mathsf{M} & \rightarrow & \mathsf{O}_3 + \mathsf{M} \end{array}$

Tropospheric chemistry

Scavenging of toxic CO by the detergent of the atmosphere, the hydroxyl radical OH.

CO + OH	\rightarrow	CO ₂ + H	
$H + O_2 + M$	\rightarrow	HO₂ + M	(very fast)
HO ₂ + NO	\rightarrow	$\Theta H + NO_2$	
$NO_2 + hv$	\rightarrow	NO + O	
$\Theta + O_2 + M$	\rightarrow	$O_3 + M$	

(Net): $CO + 2O_2 + hv \rightarrow CO_2 + O_3$

Tropospheric gas phase chemistry involves oxidation of CO and <u>organic hydrocarbons</u> ($C_xH_yO_z$) in the presence of <u>nitrogen oxides</u> ($NO_x \equiv NO + NO_2$) and <u>solar radiation (*hv*)</u>.

Oxidants in the troposphere

The atmosphere is an **oxidizing** medium.

Examples(oxidation numbers)Hydrocarbons: $CH_4 \rightarrow CO_2$ i.e. $C(-IV) \rightarrow C(+IV)$ Sulphur species: $H_2S \rightarrow H_2SO_4$ i.e. $S(-II) \rightarrow S(+VI)$ Nitrogen species: $NO \rightarrow HNO_3$ i.e. $N(+II) \rightarrow N(+V)$

- The most abundant oxidants (O₂ and O₃) are relatively unreactive and therefore contribute very little to the oxidation of trace gases.
- Oxidation of non-radicals generally involves radical species, not O₂ and O₃.
- Exception: alkenes (R-CH₂=CH₂-R) can be oxidized by O₃ at carbon-carbon double bond

Tropospheric chemistry

Tropospheric gas phase chemistry involves oxidation of organic compounds in the presence of nitrogen oxides and solar irradiation.

hv-

Similar to a hot flame, the oxidation proceeds with the aid of free radicals (radical concentrations in the troposphere are much lower than in the flame.)

Solar radiation is the external energy source driving the "combustion".

The organic compounds, for instance methane, is the "fuel". Oxidation - troposphere

Tropospheric oxidation of trace gases

There must be strong sinks for nearly all gases emitted from Earth to the troposphere, since the concentrations of these gases do not increase in proportion to their source strengths.

Trace gases are oxidized, often in multiple steps.

Gases containing sulphur and nitrogen are oxidized to water-soluble compounds that are eventually wet deposited (acid rain).

Tropospheric oxidation is a vital sink for trace gases and greenhouse gases (e.g. CH_4 and CO that are both oxidized to CO_2).

Without the presence of strong oxidants in the troposphere the levels of a number of toxic trace gases would have risen to lethal concentrations (e.g. CO, SO_2).

Tropospheric ozone

Ozone is needed to initiate the radical production and thus also to maintain an oxidizing atmosphere.

Until the middle of the 1940-ies, it was believed that all tropospheric ozone originates from the stratosphere, where it was known to be produced via photolysis of O_2 (λ < 240 nm).

Since this UVc radiation is unable to penetrate down to Earth's surface, it was thought that no ozone could be produced in the troposphere. Earth's surface is an efficient ozone sink.

The Los Angeles smog made it apparent that there must be other strong sources of ozone also in the lower troposphere.

The Los Angeles Smog

Ozone production in the troposphere

The only way to produce ozone is via

 $O + O_2 + M \rightarrow O_3 + M$

with molecular oxygen O_2 and atomic oxygen O in its ground state $O(^{3}P)$,

This means that O has to be produced first.

Photolysis of O_2 does <u>not</u> occur in the troposphere (no UVc).

 $-\Theta_2 + h\nu \rightarrow \Theta + \Theta \qquad (\lambda < 240 \text{ nm, UV})$

There must be other sources of **O** in the troposphere.

Main source of O in the troposphere is via photolysis of NO_2

 $NO_2 + h\nu \rightarrow NO + O \ (\lambda < 420 nm)$

This reaction is very important for the tropopheric chemistry!

Oxidants in the troposphere

 NO_2 and solar radiation controls the production of O_3 , which in turn controls the production of HO_X radicals $\equiv OH + HO_2$, which in turn controls the oxidizing capacity of the troposphere and the lifetime of trace gases.

- The hydroxyl radical is formed by photolysis of ozone and is the most important radical in the troposphere.
- It does not react with any of the major components of the atmosphere (N₂, O₂, CO₂, H₂O).
- It reacts with most atmospheric trace gases. The "detergent" of the atmosphere.

Short lifetime (~1 s).

Exists in very low concentrations (10⁵-10⁷ molecules/cm³).

Regenerated in catalytic cycles, since it would otherwise rapidly have been consumed.

Production of hydroxyl radicals OH via O₃

(1) O₃ + hν → O₂ + O(¹D) (excited atomic oxygen, λ < 320 nm)
(2) O(¹D) + M → O(³P) + M (~90%) or
(3) O(¹D) + H₂O → 2OH (~10%, one O₃ gives two OH)

Net 1 & 3: $O_3 + H_2O + hv \rightarrow 2OH + O_2$

Prerequisite: Production of excited atomic oxygen O(¹D)

Production of OH mainly proceeds via three reactions:

(1) $O_3 + H_2O + h\nu \rightarrow 2OH + O_2$

(2) $HO_2 + NO \rightarrow OH + NO_2$

(3) HONO + $h\nu \rightarrow$ OH + NO

Reaction (1) dominates in clean background air ("low" NO_x , high RH).

Reaction (2) dominates in polluted air (high NO_x).

Reaction (3) from HONO only of importance at sunrise since HONO is rapidly photolyzed (within 10 min - 1 h).

Small amount of OH is also produced during the night when alkenes are oxidized by O_3

Hydroxyl radical OH responds quickly to UV

Production of the hydroxyl radical OH

Production of O(¹D) occurs in a narrow wavelength band between 300-320 nm.

Actinic flux (Ljusflöde) : INumber of photons crossing the unit horizontal area per unit time (photons \cdot m⁻² \cdot s⁻¹)

Absorption cross-section : σ "Target area" per molecule within which the photon is absorbed (m² · molecule ⁻¹)

Quantum yield (Kvantutbyte) : qProbability that absorption of a photon will cause photolysis (molecules \cdot photon ⁻¹)

```
Photolysis rate constant k:
```

 $k = q \cdot \sigma \cdot I$ (s⁻¹, wavelength dependent)

Ozone photolysis in the troposphere

Photolysis of O₃ in the troposphere O₃ + h_v \rightarrow O₂ + O(¹D) (excited atomic oxygen, λ < 320 nm)

Integrate over all wavelenghts, that is $k=\int q(l)s(l)I(l)dl$. The unit is then s⁻¹. Multiply the values of the wavelengthdependent photolysis rate constants with the interval width (10 nm) and sum up. This **yields** $k_{03} = 3.9 \cdot 10^{-5} \text{ s}^{-1}$. If one integrates (sums) only for 305 and 315 nm, you get almost the same result; $k_{03} = 3.86 \cdot 10^{-5} \text{ s}^{-1}$.

Oxidation - troposphere

340

Derive an expression for the Production of hydroxyl radicals OH via O_3 which should be a function of [M], $[O_3]$ and $[H_2O]$

(1) $O_3 + h\nu \rightarrow O_2 + O(^1D)$ (excited atomic oxygen, $\lambda < 320$ nm)

(2) $O(^{1}D) + M \rightarrow O(^{3}P) + M$ (~90%) or

(3) $O(^{1}D) + H_{2}O \rightarrow 2OH$ (~10%, one O_{3} gives two OH)

 $O(^{1}D)$ short-lived, Hence you can assume "steady state" for $O(^{1}D)$

Derive an expression for the Production of hydroxyl radicals OH via O_3 which should be a function of [M], $[O_3]$ and $[H_2O]$

(1) $O_3 + hv \rightarrow O_2 + O(^1D)$ (excited atomic oxygen, $\lambda < 320$ nm)

(2) $O(^{1}D) + M \rightarrow O(^{3}P) + M$ (~90%) or

(3) $O(^{1}D) + H_{2}O \rightarrow 2OH$ (~10%, one O_{3} gives two OH)

Prerequisite: Production of excited atomic oxygen O(¹D) short-lived \rightarrow Assume "steady state" for O(¹D)

$$0 = \frac{d}{dt} [O(^{1}D)] = k_{1} [O_{3}] - k_{2} [O(^{1}D) [M] - k_{3} [O(^{1}D) [H_{2}O] \Rightarrow [O(^{1}D)] = \frac{k_{1} [O_{3}]}{k_{2} [M] + k_{3} [H_{2}O]} \quad \text{Eq. 1}$$

$$\mathsf{P}_{\mathsf{OH}} = \frac{d}{dt} [OH] = 2k_{3} [O(^{1}D)]H_{2}O] \quad \text{Eq. 2}$$

Insert Eq. 1 into Eq. 2 \rightarrow $\mathsf{P}_{\mathsf{OH}} = \frac{2k_1k_3[O_3][H_2O]}{k_2[M] + k_3[H_2O]} \approx$

(2) Faster than (3), [M]>[H₂O]
$$\rightarrow$$
 P_{OH} $\approx \frac{2k_1k_3}{k_2[M]}[O_3][H_2O]$ Eq. 3

Production of the hydroxyl radical OH

$$P_{OH} \approx \frac{2k_1k_3}{k_2[M]} [O_3] [H_2O]$$
 Eq. 3

Why is the [OH] highest in the tropics at 500 hPa? 200

Production of OH most efficient when

- plenty UVb radiation ($\lambda < 320 \text{ nm}, k_1$)
- high ozone levels ([O₃])
- high humidity ([H₂O])
- low pressure ([M])

OH [10⁵ molecules cm⁻³]

Production of OH largest in middle troposphere in the tropics.

It takes 1-2 months for an air mass at our latitudes to disperse to the tropics.

Large fractions of our air pollutants are processed in tropics.

Hydroxyl radical OH – Modelling

The 3-dimensional global chemistry transport model GEOS-CHEM

http://www.chem.leeds.ac.uk/Atmospheric/Field/fage/modelling.html

Lifetime for the hydroxyl radical OH

OH lifetime τ_{OH} can be estimated by knowing the most important sinks *i*

$$\tau_{OH} = \frac{1}{\sum_{i} k_i n_i}$$

where n_i is the number concentration of molecule *i* and k_i is the corresponding rate constant.

The most important OH sinks (and for CO and CH₄) are

(4) $CO + OH \rightarrow CO_2 + H$ (5) $CH_4 + OH \rightarrow CH_3 + H_2O$

 τ_{OH} = seconds (τ_{CO} = 1-4 months, τ_{CH_4} = ~10 years)

Titration of hydroxyl radical OH

The stratosphere is not a sufficient source of tropospheric ozone to account for the levels of OH in the troposphere.

The global sources of CO and CH_4 are strong enough to titrate out all tropospheric OH that originates from stratospheric ozone.

Levels of CO and CH₄ should rise to catastrophic levels!

Presence of NO_X ($\equiv NO + NO_2$) gives a catalytic regeneration of OH (and O_3) in the troposphere.

Presence of NO_X even at the low levels typically found in background air masses is very important for the oxidizing capacity of the troposphere and thereby life on Earth.

Oxidation of carbon monoxide – high NO_x

Catalytic ozone production:

 $CO + OH \rightarrow H + CO_2$

 $H + O_2 + M \rightarrow HO_2 + M$

 $HO_2 + NO \rightarrow OH + NO_2$

 $NO_2 + hv \rightarrow NO + O$

 $O + O_2 + M \rightarrow O_3 + M$

(Net): $CO + 2O_2 + hv \rightarrow CO_2 + O_3$

 $O_3 + h\nu \rightarrow O_2 + O(^1D)$ and $O(^1D) + H_2O \rightarrow 2OH$

Each cycle produces one net O_3 or 2OH.

Oxidation of carbon monoxide – high NO_x

Oxidation of carbon monoxide – low NO_x

Catalytic ozone loss:

- $CO + OH \rightarrow H + CO_2$
- $H + O_2 + M \rightarrow HO_2 + M$
- $HO_2 + O_3 \rightarrow OH + 2O_2$

(Net): $CO + O_3 \rightarrow CO_2 + O_2$

Each cycle consumes one O_3 .

Levels of NO are crucial to whether ozone is produced or consumed. Break-even lies at ~20 pptv NO (very low).

Ozone suffers a net loss only in very clean background air in the troposphere.

Such pristine air can still be found in large parts of the troposphere.

Oxidation of carbon monoxide – low NO_x

Each cycle consumes one O_3 .

Levels of NO determine whether ozone is produced or lost. Break-even lies ~20 pptv NO.

Net ozone loss occurs only in very clean tropospheric background air.

Oxidation of methane

Catalytic ozone production: $CH_4 + OH \rightarrow CH_3 + H_2O$ $CH_3 + O_2 + M \rightarrow CH_3O_2 + M$ $CH_3O_2 + NO \rightarrow CH_3O + NO_2$ $CH_3O + O_2 \rightarrow HCHO + HO_2$ $HO_2 + NO \rightarrow OH + NO_2$ (Net) $CH_4 + 2O_2 + 2NO \rightarrow HCHO + 2NO_2 + H_2O$ (2x) $NO_2 + h\nu \rightarrow NO + O$ $O + O_2 \rightarrow O_3$ $O_3 + h\nu \rightarrow O_2 + O(^1D) = O(^1D) + H_2O \rightarrow 2OH$

Each cycle produces net $2O_3$ or 4OH.

$CH_4 \rightarrow HCHO \rightarrow CO \rightarrow CO_2$

methane C(-IV) \rightarrow formaldehyde C(0) \rightarrow carbon monoxide C(II) \rightarrow CO₂ C(IV)

Oxidation of hydrocarbons RH

Examples: Alkanes RH RH + OH \rightarrow R + H₂O R + O₂ + M \rightarrow RO₂ + M RO₂ + NO \rightarrow RO + NO₂ RO + O₂ \rightarrow R_{-H}O + HO₂ HO₂ + NO \rightarrow OH + NO₂

- (Net) $RH + 2O_2 + 2NO \rightarrow R_{-H}O + 2NO_2 + H_2O$
- (2x) $NO_2 + hv \rightarrow NO + O$ $O + O_2 \rightarrow O_3$ $O_3 + hv \rightarrow O_2 + O(^1D)$ $O(^1D) + H_2O \rightarrow 2OH$ Each cycle produces net $2O_3$ or 4OH.

Oxidation of hydrocarbons

Hydrocarbons (the fuel) are oxidized in the troposphere in multiple steps.

Hydrocarbon \rightarrow aldehyde \rightarrow organic acid \rightarrow carbon monoxide \rightarrow CO₂

 $\begin{array}{cccc} \mathsf{RH} & \rightarrow & \mathsf{R}_{-\mathsf{H}}\mathsf{O} & \rightarrow & \mathsf{RCOOH} & \rightarrow & \mathsf{CO} & \rightarrow & \mathsf{CO}_2 \\ \\ \mathsf{Oxidation\ number\ for\ carbon\ atom:} \\ \mathsf{C}(\mathsf{-IV}) & \rightarrow & \mathsf{C}(\mathsf{0}) & \rightarrow & \mathsf{C}(\mathsf{+II}) & \rightarrow & \mathsf{C}(\mathsf{+II}) & \rightarrow & \mathsf{C}(\mathsf{+IV}) \end{array}$

Oxidants in the troposphere

 NO_2 and solar radiation controls the production of O_3 , which in turn controls the production of HO_X radicals $\equiv OH + HO_2$, which in turn controls the oxidizing capacity of the troposphere and the lifetime of trace gases.

Sources of NO_x

	Source (Tg N/yr)
Fossil fuel combustion	21 (45%)
Biomass combustion	12 (25%)
Soils	6 (13%)
Lightning	3 (7%)
Oxidation of NH ₃	3 (7%)
Air traffic	0.5 (1%)
Transport from the stratosphere	0.1
Total	~46

Sources of NO_x

Anthropogenic sources of NO_X (caused by human activities) dominate compared to the natural sources.

Sinks for NO_x

 NO_X is mainly emitted as NO (at high temperatures). NO_X is cycled between NO and NO_2 (~1 minute).

 $\begin{array}{ll} (14) & \mathsf{NO} + \mathsf{O}_3 \twoheadrightarrow \mathsf{NO}_2 + \mathsf{O}_2 \\ (11) & \mathsf{NO}_2 + h_{\mathcal{V}} \twoheadrightarrow \mathsf{NO} + \mathsf{O} \\ (10.2) & \mathsf{O} + \mathsf{O}_2 + \mathsf{M} \twoheadrightarrow \mathsf{O}_3 + \mathsf{M} \end{array} \begin{array}{l} (\lambda < 420 \text{ nm}) \\ (\mathsf{only way to produce } \mathsf{O}_3) \end{array}$

Sinks for NO_x

 NO_X is mainly emitted as NO (at high temperatures). NO_X is cycled between NO and NO_2 (~1 minute).

(14) $NO + O_3 \rightarrow NO_2 + O_2$ (11) $NO_2 + h_V \rightarrow NO + O$ ($\lambda < 420 \text{ nm}$) (10.2) $O + O_2 + M \rightarrow O_3 + M$ (only way to produce O_3)

(Net) No net formation or loss of either NO_X or O_3

The above reactions represents a null-cycle for NO_X and O_3

Sinks for NO_x

Apart from removal of HO_X radicals, the catalytic ozone production cycle can also be broken by removing NO_X .

(30) $NO_2 + OH + M \rightarrow HNO_3 + M$ (daytime)

Nigthtime:

- (31) $NO_2 + O_3 \rightarrow NO_3 + O_2$ (NO₃ rapidly photolyzed)
- (32) $NO_3 + NO_2 + M \rightarrow N_2O_5 + M (N_2O_5 water-soluble)$
- (33) $N_2O_5 + H_2O \rightarrow 2HNO_3$ (on an aerosol particle)

$$\tau_{NOx} = \sim 1 \text{ day}$$

HNO₃ is very water-soluble and is washed out by precipitation (wet deposition).

HNO₃ is not a long-term reservoir for NO_X (τ_{HNO3} = days).

$\gamma^{\circ} \sim \overset{\check{H}}{\sim} \sim PAN - Reservoir for NO_x$

Peroxyacetylnitrate (PAN) is an efficient reservoir for NO_X . $PAN = CH_3C(O)OONO_2$

PAN enables NO_{x} to be transported long distances and contribute to the levels of NO_{x} in background air, which in turn adds to the oxidizing capacity in remote environments.

PAN is formed for instance when acetaldehyde reacts with OH radicals and then further with NO_2 . Levels of PAN in polluted air can reach 1 ppb.

PAN is thermally unstable.

(37) heat
$$PAN \rightarrow CH_3C(0)OO + NO_2$$

 $\tau_{PAN} = \sim 1$ hour at 295 K (lower troposphere) τ_{PAN} = months at 250 K (upper troposphere)

Long-range transport of NO_x via PAN

NO_x SOURCE REGION REMOTE ATMOSPHERE

Global budget for tropospheric ozone

Ozone production in the troposphere is limited by the reactions $HO_2 + NO \rightarrow OH + NO_2$ (70% globally) $CH_3O_2 + NO \rightarrow CH_3O + NO_2$ (20% globally) $RO_2 + NO \rightarrow R_{-H}O + NO_2$ (10% globally) followed by $NO_2 + h\nu \rightarrow NO + O$, and $O + O_2 \rightarrow O_3$

Down-mixing of stratospheric ozone is also a significant source.

Ozone loss in the troposphere is limited by the reactions $O(^{1}D) + H_{2}O \rightarrow 2OH$ (40% globally, photolysis of O₃) $HO_{2} + O_{3} \rightarrow OH + 2O_{2}$ (40% globally) $OH + O_{3} \rightarrow HO_{2} + O_{2}$ (10% globally) Dry deposition of ozone is also a significant sink.

Anthropogenic modifications of the troposphere

Modelled net O₃ production rates (ppbv/day)

Annual mean distribution of net O3 production in ppbv/day in (top) the boundary layer and (bottom) at northern mid-latitudes (20–60N) in (a) 1900, and (b) 2000. The contour line marks zero net production.

Modelled OH concentrations 1900 - 2100

O. Wild, P.I. Palmer, How sensitive is tropospheric oxidation to anthropogenic emissions? GRL, VOL. 35, L22802, doi:10.1029/2008GL035718, 2008

Annual mean distribution of OH (in units of 106 molecules cm-3) in the boundary layer in (left) 1900 and (right) 2100.

Modelled O₃ production and loss rates (ppbv/day)

Tropospheric O_3 production and loss rates (ppbv/day) below 250 hPa (10 km) as a function of NOx (pptv) for 1900, 2000, and 2100.

The critical NOx value for O_3 production occurs where net production (P-L) crosses zero, doubling between 1900 (28 pptv) and 2100 (55 pptv).

How is the hydroxyl radical (OH) mainly produced in clean remote atmospheric regions?

- (1) $O_3 + h\nu \rightarrow O_2 + O(^1D)$ (excited atomic oxygen, $\lambda < 320$ nm)
- (2) $O(^{1}D) + M \rightarrow O(^{3}P) + M$ (~90%) or
- (3) $O(^{1}D) + H_{2}O \rightarrow 2OH$ (~10%, one O_{3} gives two OH)

Net 1 & 3: $O_3 + H_2O + hv \rightarrow 2OH + O_2$

How is the hydroxyl radical (OH) mainly produced in polluted air? HO₂ + NO \rightarrow OH + NO₂

Which are the two main sinks for hydroxyl radicals (OH) in the atmosphere?

- (1) $CO + OH \rightarrow CO_2 + H$
- (2) $CH_4 + OH \rightarrow CH_3 + H_2O$

The Master Chemical Mechanism

mcm.leeds.ac.uk/MCM/

A searchable compilation of chemical reactions of atmospheric importance.

NASA JPL Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies

https://jpldataeval.jpl.nasa.gov/

A compilation of kinetic and photochemical data prepared by the NASA Panel for Data Evaluation.