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Abstract

A strategy for nuclear fuel bundle design optimization in boiling water reactors(BWRs),
using a simplex method, is presented and examined. The objective of the study is
to see how an automatic optimization scheme can create nuclear designs for use in
BWR fuel bundles and how the scheme can be improved. Challenges with apply-
ing linear simplex optimization to non-linear bundle physics lie in approximating
bundle characteristic parameters accurately while keeping calculation times down.
Several areas for improvements are found in the calculations and investigation of
these find that many can improve accuracy only at the cost of deteriorating calcu-
lation time, whereas others such as utilizing symmetries can improve accuracy at
no cost. The important R-factor is examined in detail and its implementation in a
simplex optimization is studied and improvements to it suggested. It is found that
automatic fuel bundle optimization using a simplex method can generate feasible
designs and in some cases perform better than layouts made by nuclear designers.
With simplex targets and constraints too narrowly specified they will however un-
derperform in areas other than the target function. The reference design entered
into the optimization is also shown to be of great importance to performance. It is
finally stressed that the optimization framework does have potential to improve the
nuclear design process but needs a user with nuclear design experience to operate
well and an improved data-management system to be user-friendly.
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Nomenclature

a The difference in k∞ at 0 GWd/tU burnup which would result from
removing all BA from the design.

b The burnup at which maximum bundle k∞ occurs

Fint Internal power peaking factor: the maximum relative pin power in
an axial fuel bundle segment.

k∞ The ratio of the neutron production rate and the neutron loss rate in a
specific fuel lattice under reflective (or periodic) boundary conditions.
Used as a measure of a specific fuel bundle’s contribution to the
neutron economy of a reactor.

P Relative power distribution: the power generated in a chosen axial
segment of a fuel rod relative to the average power in that axial
segment of the bundle.

R R-factor: a parameter used in CPR correlations as a measure of
bundle dryout sensitivity to changes in bundle power. The R-factor
is a function of the fuel bundle relative pin power distribution.

BA Burnable absorber: an element with a high thermal neutron absorp-
tion cross section, typically gadolinium, added to nuclear fuel to alter
its characteristics.

bundle Boiling Water Reactor nuclear fuel bundle. An assembly of fuel rods
used to fuel the reactor.

burnup Nuclear engineering term for the amount of energy that has been
extracted out of a nuclear fuel.

BWR Boiling Water Reactor

correlation A set of equations correlating reactor parameters such as bundle R-
factors, bundle power, axial power shape, bundle coolant flow and
inlet sub-cooling into a measure of CPR.

CPLEX A commercial simplex optimization program used in this project.

CPR Critical Power Ratio: a reactor safety margin stating how much
power can increase before inducing dryout conditions.

DOFACT A program used in this project to calculate bundle R-factors for a
dryout correlation.
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dryout A situation when heat flux from a BWR rod reaches a level where
boling water can not cool sufficiently and fuel rod temperature rises
swiftly.

enrichment The weight fraction of 235U to total uranium within a confinement; in
this project normally a fuel rod or an axial segment of a fuel bundle

gap In a simplex optimization the gap is a measure of the discrepancy
between the incumbent best solution’s objective function value and
estimation of global optimum’s. Gap tolerance prescribes how small
this gap should be for an optimization to terminate.

lattice code A coarse-grid finite mesh program that calculates burnup-dependent
fuel parameters k and P for bundle designs.

LHGR Linear Heat Generation Rate: a reactor parameter and constraint de-
scribing heat generation per fuel rod length, in this project simplified
as a constraint on Fint.

OPL Optimization Programming Language, a proprietary programming
language used to create optimization models.

PHOENIX A licensed 2D lattice code used in this project.

PWR Pressurized Water Reactor

S-matrix Sensitivity matrix: a set of data describing the effects from changes
in fuel bundle composition on fuel bundle characteristic parameters.

Simplex Simplex method, a deterministic optimization algorithm used for this
project.

tolerance see gap
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Chapter 1

Introduction

1.1 Nuclear Reactor Theory

The goal of this thesis has been to study the performance and applicability of au-
tomatically optimized nuclear designs for Boiling Water Reactor fuel bundles. To
explain the setting of the problem a background in nuclear engineering is provided,
more detailed background on nuclear physics can (amongst others) be found in
Krane [22] and detailed knowledge on nuclear engineering in Lamarsh & Baratta
[23].

1.1.1 Nuclear Fission

The underlying principle of all commercial nuclear power is nuclear fission. Nuclei
are made up of nucleons combining through interplay between the strong nuclear
force supplying an attracting force between all nucleons and the electromagnetic
force contributing a repelling force between protons. The general picture of the po-
tential arising from these forces, although complicated in its details, can be displayed
in a binding energy diagram (see Figure 1.1). The diagram in Figure 1.1 shows the
binding energy per nucleon in the nuclei from hydrogen to uranium. Omitting the
local variations caused by quantum effects in nuclear structure we see a general trend
of a sharp rise in binding energy per nucleon as light nuclei combine to form larger
cores. Fusing smaller cores into larger allows nucleons to bind more strongly to each
other thus releasing energy which of course is the fusion power that drives the sun.
However, at A = 62 the slope of the curve changes as the marginal repulsion effect
of increasing proton numbers overtake the marginal attraction of increasing nucleon
number. This negative slope gives rise to a binding energy per nucleon in 235U which
is 13.7 % lower than that in 62Ni. Although forming elements with heavier cores than
these cost energy it is possible and the earth’s crust contains substantial reserves of
accessible elements with high nucleon numbers [7]. Nuclear fission energy is released
as these heavy nuclei split and individual fission products form tighter bound nuclei
in lower states of total energy. Following fission of a heavy element there is also
usually an emission of free neutrons, this is due to another nuclear structure effect
that can be visualized on the line of beta stability, Figure 1.2.

The line of beta stability, Figure 1.2, shows how increasing the proton number
in a nucleus requires a marginally increasing number of neutrons to obtain stability
against beta decay. Stable nucleons with low mass numbers roughly follow a 1-1
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Figure 1.1: Binding energy per nucleon for a large set of isotopes. NASA [5]

Figure 1.2: A large number of isotopes, black dots represent nuclei stable against
beta decay. Note the trend towards more neutrons per proton in beta-stable nuclei.
Brookhaven National Laboratory [6]
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ratio such as in 16O whereas the most abundant form of uranium, 238U, has 1.59
neutrons per proton. This explains why common fission reactions such as Equation
1.1 create lighter elements with neutron abundance and therefore release high energy
neutrons.

236
92 U→ 141

56 Ba + 92
36Kr + 3 · 1

0n (1.1)

Although fission can occur spontaneously in heavy elements the most important
fission reactions in commercial reactors are the neutron-induced fissions of 235U and
239Pu. These nuclei both have an even number of protons and odd number of
neutrons and a significant cross section for neutron absorption into an even-even
nucleus1. This intermediary nucleus is created in a high energy state due to the
absorbed neutron; this makes it extremely likely to split. [22]

1
0n + 235

92 U→ 236
92 U∗ → 141

56 Ba + 92
36Kr + 3 · 1

0n (1.2)

Often the reaction 1.2 is written in compound form 1.3 to demonstrate how the
236U is only an intermediary stage of 235U fission.

1
0n + 235

92 U→ 141
56 Ba + 92

36Kr + 3 · 1
0n (1.3)

1.1.2 Neutron Economy

To obtain a sustained nuclear chain reaction useful for power production it is of
course a requirement that the neutrons required to induce a fission event are replaced
by new neutrons from that fission reaction. In a thermal-neutron induced 235U
fission there are on average 2.44 new neutrons released [3]. This implies that the
total loss of neutrons from phenomena such as leakage, neutron decay and neutron
capture in other elements (not inducing fission) must be approximately 59 % for the
reaction to be stable. The state of neutron production in a reactor is described by
its multiplication factor k: the ratio of the neutron production rate and the neutron
loss rate. A reactor with k = 1 is said to be critical which means that the neutron
flux is constant over time as one fission induces exactly one fission. A normally
operating reactor as a whole will always be extremely close to k = 1, or criticality,
as any deviations from k = 1 will create very fast swings in power multiplying over
extremely short neutron regeneration timescales2, this would make the reactor hard
to control. Since reactors are assumed to be very close to criticality a commonly
used unit3 for deviations from criticality (called reactivity) is the pcm, pour cent
mille or 1

100000
, used to represent small changes in multiplication factor. The k value

for the whole reactor is normally denoted k-effective (k-eff) as it covers the balance
between neutron production, neutron absorption and neutron leakage for the actual
system. To describe the reactivity characteristics of individual fuel assemblies the
term k∞ (k-infinity or k-inf) is used. In this case an infinite reactor core with the
specific fuel lattice is created using reflective (or periodic) boundary conditions.

The k∞-values for individual fuel bundles and rods may be far above or below
criticality, i.e. k∞ = 1 , contributing their share to the total k of the reactor.

1Even-even nuclei, with even numbers of both protons and neutrons are more stable than those
with odd numbers due to quantum nucleon pairing effects, it is therefore likelier for an even-odd
nucleus to absorb a neutron and become even-even than vice-versa.

2Mean neutron lifetimes in nuclear reactors range from 10-4 to 10-7 seconds, whereby a small
deviation from criticality multiplies extremely rapidly.

3k is of course dimensionless.
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The concept of k∞ on the bundle-level will be explored in further detail in the
next chapter. As a reactor operates it fissions the nuclei loaded into its core for
production of energy. In most commercial reactors a batch of fuel is inserted for a
cycle of 12-24 months and the core is kept closed without any possibility for addition
or extraction of material during this time period. Throughout this cycle the reactor
will consume, or burn, its fissile 235U leaving a smaller and smaller fraction of this
isotope available for fission. This decreasing macroscopic fission cross section implies
that the reactivity contribution from 235U would be steadily decreasing, seemingly
at odds with stable operation. Four of the factors solving this problem are:

• Neutron-induced transmutation of 238U to 239Pu generating new fissile mate-
rial.

• Neutron-absorbing movable control rods that take up excess reactivity in the
beginning of the cycle to later be withdrawn.

• Addition of a burnable absorber (BA), such as gadolinium.

• Variation of core coolant flow to change moderation (void fraction in coolant).

Burnable absorber is of key significance to this project and its properties will be
further explained in Section 1.1.5.

1.1.3 Boiling Water Reactors

Among commercial light-water moderated nuclear reactors there are two very promi-
nent classes of designs: pressurized water reactors (PWR) that use highly pressurized
light water for cooling and boiling water reactors (BWR) that operate at a lower
pressure allowing the reactor water to boil.

There are many differences between the two kinds, notably the number of coolant
loops (3 in PWR, 2 in BWR) and the operating pressure (∼70 bar for a BWR [1]
and ∼159 bar for a PWR [2]). From a nuclear core design viewpoint there are a few
principal features that make BWR’s interesting.

• The fuel bundle lattice contains inter-assembly gaps with non-boiling water
which makes the environment in which neutrons travel more heterogeneous
than that of a PWR fuel. Typically BWR designs feature greater numbers of
enrichment levels in more complicated patterns than PWR nuclear designs.

• The properties of the coolant water changes axially as it boils, the top region
of a fuel assembly will thus operate in higher void than the bottom region.
This makes the fuel design in BWRs more 3-D dependent than in PWRs.

These traits of BWRs mean that there is a large scope for fuel designs to optimally
utilize uranium and burnable absorber material in the fuel and thus a good prospect
for optimization; to deliver favorable properties of the fuel assemblies. [23]

1.1.4 Critical Power Ratio

The large power density of nuclear reactors brings with it several cooling issues
related to the properties of the coolant water. In BWRs an important safety issue

Chapter 1 Anders Haulin 11
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concerns Critical Heat Flux (CHF), the heat flux from a fuel rod at which the film
of liquid water present on the surface of the rod under good operating conditions
can not be sustained and no liquid water is available for surface boiling (and thus
cooling). As long as there is enough water to sustain boiling an increase in heat
flux will cause an increase in heat transfer through increased boiling. If the heat
flux rises too much, the water film can become broken up by bubbles and if the flux
gets too intense large regions of insulating void can occur. When this insulating
void occurs the heat transfer rate from the rod to its environment can not increase.
This dangerous phenomenon is also called dryout and when increased heat flux
leads to decreased boiling heat transfer the rod temperature can rise dramatically;
risking fuel damage or perhaps even core meltdown. Dryout is said to occur when
a rod temperature increase of more than 25 degrees per second is observed [20].
The value of the CHF power flux depends heavily on reactor parameters and fuel
design. Modern BWR fuel employs several details to distribute water in an optimal
fashion and bundle load patterns are often optimized for a good Critical Power Ratio
(CPR). CPR is the ratio of CHF and the heat flux in the worst cooling channel across
the reactor, stating how much the power can increase without reaching CHF. The
interplay between CPR and bundle design through the important R-factor will be
explained in greater detail in Section 1.2.3.4

1.1.5 Uranium Enrichment and Burnable Absorber

This project deals with optimizing two components over nuclear fuel bundle grids
to obtain optimal bundle properties. The components are uranium enrichments.
Uranium enrichment refers to the percentage by weight of 235U in the uranium com-
ponent in a certain area such as fuel rod, fuel bundle or the entire reactor core.
The fuel assemblies considered in this project can have uranium enrichments from
natural unenriched (0.71) up to 4.95 % 235U. Burnable absorber (BA) is an element,
typically gadolinium, added to the nuclear fuel to alter the profile of Figure 1.3.
Burnable absorbers are isotopes that have very high thermal neutron absorption
cross sections and can therefore decrease the fission-inducing neutron flux in their
vicinity, see Table 1.1 for gadolinium thermal neutron capture cross sections. How-
ever, subsequent neutron absorptions during the reactor cycle eventually transmute
the isotope into one with a much smaller absorption cross section. The diminishing
number of nuclei of absorbing isotopes means that the negative contribution to k
also decreases.

Thus the BA effect on k counters that of the enriched uranium, first lowering
the neutron flux but eventually decreasing its absorption effect, becoming “burnt
out”. Figure 1.3 shows how introduction of BA into a lattice drastically changes the
bundle’s k contribution to a core, its k∞ curve, and decreases the difference between

4The dryout safety concern in BWRs has a PWR analogy known as departure from nucleate
boiling, DNB. Both situations concern a critical heat flux where cooling properties change starkly.
The difference between the two lies in the ratios of steam and liquid water in the two reactor types:
PWRs have cooling channels of mostly non-boiling water with boiling occurring at fuel rod surfaces
whereas BWR cooling channels contain mostly steam with films of water dispersed to cover fuel
rods. DNB occurs when bubbles from boiling combine and form films that insulate the fuel rods
and the boiling regime changes from nucleate boiling to film boiling. The PWR CPR ”equivalent”
called DNB ratio plays a similar role as CPR as a parameter to optimize to risks of dangerous
steep temperature increases.[26]
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the thermal 157Gd resonance ~see Table IV!. The thermal
elastic scattering cross section for 157Gd has a large un-
certainty since it is essentially the small difference of
two large numbers ~total and capture cross sections!.
Gadolinium-156 also exhibits a large deviation from
ENDF in its small and statistically uncertain thermal elas-
tic cross section. Gadolinium-156 has only two reso-
nances below 100 eV. The increase in its thermal elastic
cross section is due to the substantial increase in the
neutron width of the 80 eV resonance ~see Table V!.
However, the uncertainty on that neutron width ~see
Table V! encompasses the majority of the increase.

Resonance integrals ~Table VIII! are given for each
isotope as well as their contribution to the elemental
values. The integrations extend from 0.5 eV to 20 MeV.
The low-energy cutoff is above the thermal region dou-
blet. The elemental resonance integral for Gd as mea-
sured is 2.8% ~11 b! larger than that of ENDF. The largest
fractional increases in isotopic contributions occur in
154Gd and 158Gd; 154Gd and 158Gd have far fewer reso-
nances than 155Gd or 157Gd. A 14% increase in the 158Gd
resonance integral compared to ENDF was measured.
This is dominated by the 22.3-eV resonance whose neu-
tron width changed by approximately the same amount.

TABLE VI

Thermal Capture Cross Sections: A Comparison of ENDF0B-VI to RPI Results*

Thermal Capture Cross Sections

ENDF RPI

Isotope Abundance
Thermal
Capture

Contribution
to Elemental Percent

Thermal
Capture

Contribution
to Elemental Percent

152Gd 0.200 1 050 2.10 0.00430 1 050 2.10 0.00430
154Gd 2.18 85.0 1.85 0.00379 85.8 1.87 0.00422
155Gd 14.80 60 700 8 980 18.4 60 200 8 910 20.1
156Gd 20.47 1.71 0.350 0.000717 1.74 0.356 0.000804
157Gd 15.65 254 000 39 800 81.6 226 000 35 400 79.9
158Gd 24.84 2.01 0.499 0.00102 2.19 0.544 0.00122
160Gd 21.86 0.765 0.167 0.000342 0.755 0.165 0.000372

Gd — 48 800 100.0 44 300 100.0

*The units of all cross sections are barns. The units of abundance are percent.

TABLE VII

Thermal Elastic Scattering Cross Sections: A Comparison of ENDF0B-VI to RPI Results*

Thermal Elastic Cross Sections

ENDF RPI

Isotope Abundance
Thermal
Elastic

Contribution
to Elemental Percent

Thermal
Elastic

Contribution
to Elemental Percent

152Gd 0.200 23.4 0.0468 0.0277 23.4 0.0468 0.0342
154Gd 2.18 7.29 0.159 0.0941 6.69 0.146 0.107
155Gd 14.80 60.8 8.99 5.32 59.7 8.84 6.45
156Gd 20.47 5.64 1.16 0.686 6.93 1.42 1.04
157Gd 15.65 1010 157 92.9 798 125 91.2
158Gd 24.84 3.30 0.820 0.485 3.27 0.812 0.593
160Gd 21.86 3.63 0.795 0.470 3.63 0.794 0.580

Gd — 169 100.0 137 100.0

*The units of all cross sections are barns. The units of abundance are percent.

276 LEINWEBER et al.

NUCLEAR SCIENCE AND ENGINEERING VOL. 154 NOV. 2006

Table 1.1: Neutron absorption cross sections for gadolinium isotopes, cross sections
in barns. Source: Leinweber et al [21].

minimum and maximum reactivity. The effect of BA is often quantified using two
parameters: the decrease in initial k∞ arising from the BA in a design compared to
an identical enrichment design void of BA (denoted a) and the level of burnup at
which peak k∞ occurs (denoted b). In BWR fuel BA is usually present in some fuel
rods in the lattice and its concentration can vary axially through the bundle. The
fuel bundles considered in this project can have BA in any rod position, except for
peripheral and part length fuel rod positions, in weight percentages from 2 to 9 %.

1.2 BWR Fuel Bundles

1.2.1 Mechanical Design

The fuel bundles used in a BWR are different from PWR bundles in a number of
ways. A typical PWR bundle has 17x17 rods in a quadratic grid [8]. BWR fuel
bundles are usually smaller using 10x10, 9x9, or 8x8 grids [10]. The axial and radial
void variation in a BWR typically makes the optimization of a BWR bundle a greater
challenge involving greater numbers of enrichment grades than in a PWR. BWR
fuel bundles have several adaptations to perform better in high void environments:
notably mixing vanes, water crosses with non-boiling water and partial length rods.
Mixing vanes are features in the mechanical design, such as small wing-like plates,
that spread water laterally within the fuel bundle [4]. Water crosses are sections
with non-boiling water in the center of the bundles that improve the moderation of
the fuel and contribute to a flatter power distribution within the fuel bundle.

The BWR bundles considered for optimization are made up of 10x10 grids with a
water cross of four central non-fuel positions for a total of 96 fuel rods. The bundle
is considered to consist of four sub-bundles (NW, NE, SE, SW) of 24 rods each;
within a sub-bundle rod spacing is almost equal, whereas the rod to rod distances
between neighboring sub-bundles are somewhat greater due to the presence of the
water cross. A special feature of the assembly designs considered for optimization
is that they contain partial length rods, these are rods of approximately 1/3 or 2/3
the length of the fuel assembly. These rods are located in the center and corners of
the fuel bundle, as shown in Figure 1.4.

The inclusion of these partial length rods means that the physics will differ

Chapter 1 Anders Haulin 13
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Figure 1.3: k profile for a high-enriched BWR fuel bundle without BA (blue) is
contrasted with one adding 12 rods of 8 % Gd (green).

significantly between axial regions with different numbers fuel of rods. To account
for this the nuclear design and all calculations are done in three slices: bottom (96
rods), middle (92) and top (84).

Optimization by changes to the mechanical design, such as varying the length of
partial length rods, is not considered in this thesis.

1.2.2 Nuclear Design

The nuclear design of a bundle is the specific layout of uranium enrichments and
gadolinium concentrations in the bundle. Obtaining the optimal layout of these
elements is the overall topic of this thesis and a few words should be said about how
to proceed.

Fabrication constraints

As mentioned previously the fuel in a reactor is composed of hundreds of bundles,
bundles are in turn assemblies of 96 rods, each full-length rod is 3-4 m long and is
made up of cm-long pellets stacked on each other surrounded by zirconium alloy5

cladding. In theory it would be possible to individually design each fuel rod using
pellets of unique compositions. To connect the optimization problem to the assembly
lines and economics of reality some fabrication constraints are however introduced,
in Table 1.2 examples of some of these constraints are summarized.

5Zirconium has a very low neutron absorption cross section and is therefore used for cladding
in fuel assemblies.

14 Chapter 1 Anders Haulin
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Figure 1.4: The layout of the fuel bundles considered for optimization. Westinghouse
2003 [11].

Typically Gd rods have axially varying composition to optimize overall perfor-
mance but their design regions need not be the same as the slices used in calculation
(which are defined by the length of PLRs). To simplify calculations this assumption
has however been made in this project.

These constraints apply to each rod and to obtain an economical bundle design
some further limitations apply to the bundle optimization as a whole:

• A maximum number of uranium enrichments used.

• A maximum number of Gd concentrations used.

• A maximum number of Gd rod types, a rod design with a specific U and Gd
profile.

Optimization goals

Apart from generating the best possible bundle performance an optimization may
also be targeted at reducing the complexity and cost of the manufacturing by tar-
geting the number of fuel rod types used or the total number of Gd rods.
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Rod types Axial distribution Possible concentrations
Uranium rods Entire rod homogenous 2.4 - 4.8% w/o U235 in 0.2%

increments and 4.95%.
BA rods 3 axial zones (bottom, mid-

dle, top), with individual
Gd & U properties

0% and 2 to 8% Gd in 0.5%
increments. Enrichments as
for pure uranium rods.

Table 1.2: Examples of fabrication constraints used in optimization.

2 2 3.4 3.4 2.8 2.8 3.4 3.4 2.8 2

2 3.2 & 3 % 4.4 4.4 3.8 3.8 4.4 4.4 3.2 & 3 % 2.8

3.4 4.4 4.4 4.4 3.4 3.4 4.4 4.4 4.4 3.4

3.4 4.4 4.4 3.2 & 3 % 3.8 3.8 3.2 & 3 % 4.4 4.4 3.4

2.8 3.8 3.4 3.8 3.8 3.4 3.8 2.8

2.8 3.8 3.4 3.8 3.8 3.4 3.8 2.8

3.4 4.4 4.4 3.2 & 3 % 3.8 3.8 3.2 & 3 % 4.4 4.4 3.4

3.4 4.4 4.4 4.4 3.4 3.4 4.4 4.4 4.4 3.4

2.8 3.2 & 3 % 4.4 4.4 3.8 3.8 4.4 4.4 3.2 & 3 % 2.8

2 2.8 3.4 3.4 2.8 2.8 3.4 3.4 2.8 2

Figure 1.5: An example of a nuclear design: plain boxes are uranium enrichments
and yellow boxes BA rods. with % declaring Gd concentrations.

1.2.3 Fuel Bundle Characteristic Parameters

A fuel bundle design such as Figure 1.5 can be characterized by a number of param-
eters that describe its performance, there are a three major parameters (and one
unit) of interest to the optimizations in this project.

Burnup

Burnup is a nuclear engineering term for the amount of energy that has been ex-
tracted out of a nuclear fuel. It is in this project measured in GWd/tU, Gigawatt-
days per ton uranium metal. Burnup is used in this project chiefly as the X-axis
against which the three parameters listed below are evaluated. The burnup is there-
fore intuitively seen as an analogy to time, but the time in which bundle will reach
a certain burnup is in no way constant but varies with the power level at which the
fuel is operated.
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Bundle k∞

The first parameter of interest is the infinite lattice multiplication factor of an axial
cross section of an individual fuel bundle, denoted k∞. The multiplication factor
for an infinite lattice is computed by assuming a mirror symmetry around the fuel
bundle in question, thereby effectively computing the k of an infinite reactor built
solely with the type of bundle considered. Although this assumption is clearly
unrealistic it serves to compute a measure of the contribution to whole-core k-
effective from a single bundle. Although the reactor as a unit will of course need to
operate at k = 1 at all times the properties of individual fuel rods in the core can
vary significantly as they have very different burnup (being fresh or re-used), nuclear
design and environment. While the k-eff of the core as a whole is controlled with
control rods and core coolant flow to be close to unity, the k∞ of a single bundle
will vary much more over time as its Gd, 235U and 239Pu content evolves.

Relative Pin Power distribution

The second interesting parameter is the relative pin power distribution(referred to
as P for brevity), the power generated in a chosen axial segment of a fuel rod relative
to the average power in that axial segment of the bundle6. In bundle evaluations this
distribution is obtained using the same mirror symmetry as for k∞. This relative
power distribution is determined by the geometry of the fuel lattice in combination
with the enrichment and BA layout for individual fuel rods. The internal power
peaking factor Fint: in this report defined as the maximum relative pin power in an
axial fuel bundle segment, is an important parameter of bundle performance. In the
loaded reactor core the total power peaking factor is limited, i.e. the combination of
internal peaking factor, radial (within core) and axial power peaking factors. If the
internal peaking factor is high there is less room for radial and axial power peaking
in the reactor. Furthermore a high Fint means that the power is unevenly distributed
over the bundle which implies that the burnup will be inhomogeneous within the
fuel bundle. The relative pin power is often limited in optimization by a constraint
on Linear Heat Generation Rate, LHGR, on whole core level this constraint limits
the nominal power in watts per meter of fuel rod but in bundle level optimization
this value can not be computed and the limit is instead simplified as one on Fint.

R-factor

One important limitation for the core loading is the margin to dryout expressed as
Critical Power Ratio (CPR, explained in Section 1.1.4). CPR is calculated using
a correlation where important parameters are bundle power, axial power shape,
bundle coolant flow and inlet sub-cooling. The inherent property of the fuel is
described by the R-factor (sometimes called K-factor) and is used as input to the
correlation. The R-factor correlates relative pin power distribution to a measure

6The nominal power of bundles depend strongly on their surroundings in the core is therefore
beyond the scope of this thesis. The combination of k∞ and relative power is enough to evaluate
the performance of individual fuel bundles.
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of dryout sensitivity for the fuel bundle7. Keeping the R-factor low8 will make it
possible to operate the fuel bundle at a higher power level or with a lower coolant
flow which has an economical value. Alternatively better CPR performance can
be used for more operational flexibility. The importance of the R-factor on critical
power ratio is significant: a rule of thumb is that an increase in R-factor of 1 %
worsens the CPR by ∼2%[12] but the effect can be even greater [13]9. The R-
factor algorithm combines the internal power distribution with the individual fuel
rod dryout sensitivities, normally expressed as additive constants. The additive
constants for a BWR mechanical bundle design are obtained through extensive tests
in laboratories where fuel bundles are heated electrically in a manner that simulates
fission heat generation. By conducting experiments with different internal power
distributions and fitting the results into to a basic theoretical dryout correlation the
individual fuel rod dryout sensitivities are obtained as additive (fitting) constants.
The exact components of such a correlation are specific for every fuel vendor and
model but the main equations are similar; the correlation studied in this thesis
is based on XL boiling length correlation[13]. The basic formula for the R-factor
calculation is common for most XL correlations and here it is given in a general
form without weighting factors or additive constants, Equation 1.4.

Ri,s,z =

(
T

Sz

)1/2
[
WIi · (ri,s,z)1/2 + SJi,s,z + SKi,s,z

WIi +
∑nj

j=1 WJj +
∑nk

k=1 WKk

]
+ Ii (1.4)

Where ri,s,z is a function of the power in a relative to its sub-bundle, Equation 1.5.

ri,s,z =
Pi,s,z · Sz

Ps,z

(1.5)

And SJ , SK are non-linear functions using the smallest value of nodal power in pin
i and a weighted average of side 1.6 or diagonally 1.7 bordering nodal powers.

SJi,s,z = min

(
nj∑
j=1

WJj · (rj,s,z)1/2, (ri,s,z)
1/2 ·

nj∑
j=1

WJj

)
(1.6)

SKi,s,z = min

(
nk∑
k=1

Wkk · (rk,s,z)1/2, (ri,s,z)
1/2 ·

nk∑
k=1

Wkk

)
(1.7)

It should be observed that there are two major non-linearities here, the square-root
dependence on nodal power and the two functions of minima. In a linearization
scheme this must be accounted for in some fashion, this will be further investigated
in the results, Chapter 5.

7An example of R-factor effects: assuming the bundle in Figure 1.4 has a homogeneous power
distribution it will have a much greater margin to critical heat flux in the corner rods since these
have much greater contact with water than the internal rods, the R-factor is therefore used to
quantify the effects of bundle power distribution and geometry on core CPR performance.

8Specifically keeping the maximum R-factor of the bundle low. The rod with the highest R-
factor is said to be R-limiting and minimizing bundle maximum R-factor is a common optimization
objective.

9Page 298.
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1.3 The case for automatic optimization

Optimization has been a topic of research in nuclear engineering for a long time.
While whole-core level optimization has been a well investigated territory[14], the
aspect of optimizing the design of a single fuel bundle is less well documented10.

The reasons for this disparity can be.

More variables A core-level optimization typically deals with a few types of fuel
assemblies and their placement in a reactor whereas fuel bundle designs must
choose values from a large, potentially continuous, set of values for enrichment
and BA concentration.

Internal process Bundle optimization is typically done by the fuel vendor before
presenting the result to the customer, thus not showcasing the method of
optimization as much as the loading pattern which can be done by the utility
and the fuel vendor in collaboration.

PWR preference Another possible key factor has been that the design of a PWR
fuel bundle is quite straightforward [12], whereas the loading pattern for such a
reactor is a harder problem. BWR fuel assemblies are harder to design but the
BWR market is only a third of the PWR market [16], making developments
less prioritized.

1.3.1 The problem at hand

The task of designing a nuclear fuel bundle is intuitively well suited for automatic
optimization: the problem is simply to assign values at every point in a grid in a
manner such that one obtains the best possible evaluation of a specified objective
function. The design constraints mentioned in the design section imply that a typical
design containing 18 Gd rods with three axial slices has 78 uranium rods and 54
individual BA rod segments to optimize (BA nodes will be assigned both a Gd
concentration and a uranium enrichment). The fabrication constraints adopted, 14
permitted enrichments and 16 gadolinium concentrations (including 0%) gives over

n =

(
96

18

)
· 1478 · (14 · 16)54 (1.8)

or 10235 possible layouts. In reality the vast majority of the combinations in Equa-
tion 1.8 are easily excluded for a number of reasons. For an isolated fuel bundle
there would be no point in breaking symmetry in the design: a skewed layout will
exhibit skewed suboptimal power distributions and utilize neutrons inefficiently. If
the environment surrounding the quadratic bundle is homogeneous it would indeed
suffice to examine an eighth of the bundle. However the environment in the reactor
is not homogeneous because of the presence of control rods: in this project these
are viewed as blades covering two of the sides in a (for example the North and West

10A notable exception to this is the N-streaming concept[15] which optimizes an entire loading
problem of a BWR by repeatedly targeting the worst rod in the worst bundle according to some op-
timization target. Although this approach seems to be efficient it is not well documented (publicly)
and it may well be based more on pure heuristics than an exhaustive optimization algorithm.
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side) which generates a diagonal symmetry. This reduces the 100x100 grid to 55
positions of which 52 are occupied by fuel rods.

After including more realistic fabrication constraints such as:

• Total of 6 enrichments used.

• Total of 2 Gd concentrations used.

• Three types of BA rods, with axial specific Gd and U profiles.

• No BA in peripheral positions of the bundles and in part length rods.

and assuming 10 are Gd rods with two of these on the symmetry line the number
of combinations is reduced to:

n =

(
29

10

)
·
(

10

3

)
· (123 · (122 · 6)2) · 642 ·

(
14

6

)
·
(

15

2

)
(1.9)

or 5 · 1056 combinations. The majority of these designs will be incompatible
with average enrichment targets and the like, but it still remains a magnificent-sized
problem.

The overwhelming issue with optimizing this grid is that the values of interest;
such as the internal form factor Fint and k∞, depend on the layout in a highly
non-trivial manner. A simple function for the exact dependence of the form factor
on enrichment or Gd concentration cannot simply be constructed. Without an
analytic function from input to output we cannot obtain an analytic gradient, and
optimization strategies based on those are therefore useless. In this project the
calculations of the bundle parameters have been conducted by a licensed 2D coarse-
grid finite mesh program, PHOENIX (referred to as 2D lattice code), that puts
up neutron balance equations and solves them using vast cross section libraries to
obtain power distributions and k∞ as a function of burnup. Using this program it
has during the project been possible to calculate around 10 slice designs in parallel
with approximately 10 seconds computing time on the cluster (during normal use).
It is therefore evident that simply evaluating any significant fraction of the possible
designs without a clever strategy is impossible in decent time.

1.3.2 Optimization strategies

Without an analytic gradient to work with the scope for optimization appears rather
limited. There are however techniques that can approach a problem such as this.
These techniques can generally be divided into deterministic and stochastic methods.

Stochastic methods

Stochastic methods utilize random but clever perturbations with inspiration from
evolutionary biology’s natural selection11 or condensed matter physics’ annealing
processes12 to generate the bundle designs to evaluate. The greatest strengths of
stochastic algorithms is that the evaluation part can be done in any way with any
type software being chosen and that the objective function can use any result from

11Called genetic algorithms, GA.
12Simulated Annealing or SA.
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this evaluation13. A weakness is however that fuel bundle PHOENIX evaluations
have to be done for every considered design in every step and that the program
will more or less run blindly. It will not know whether the objective function value
being sought is unobtainable or how long calculation time a successful optimization
will take [19]. It is also vulnerable to local optima, a perturbation contribution
(mutations in the GA example) ensures some departure from local optima but there
is no guarantee that a the best possible solution was not a combination of two
“inferior” parents that were both discarded on their individual merit [14].

Deterministic methods

To avoid these pitfalls of stochastic optimization this project uses a deterministic
method, namely the simplex method. This method is a linearization scheme that
can optimize any linear problem. Although less exact in each evaluation, it has
the great advantage of giving the user the power to choose the balance between
optimality and calculation time.

1.3.3 The simplex method

The theory behind the simplex model is covered in the appendix. It has several
advantages over stochastic methods in that it does not get trapped in local optima,
can quickly determine whether a set of constraints is infeasible and can give an
approximation of how close to the global optimum a found solution is. Its key
disadvantage is that its assumption of linearity along with the non-linearity of the
real world necessitates several linearizations of the problem at hand. The degree
of success of using the simplex model on this problem will depend on the validity
of the model being used: if large errors propagate in the optimization program’s
approximations then the task of finding the design which performs best according
to these approximations becomes pointless as its connection to reality is severed.
A key task in this thesis has therefore been to evaluate the approximations used
in the program and if possible improve them. Better approximations are likely to
increase the size or complexity of the problem, thereby prolonging the optimization
run-time.

1.3.4 Other work in the field

The simplex method has been implemented previously for whole-core loading pattern
optimization, for example by Kim & Kim [17]. In their model core-reactivity is
targeted for maximization at end-of-cycle. Including other optimization methods
there are several patents regarding whole-core nuclear optimization ([19],[18]), but
apart from N-streaming discussed earlier [15], no patents pertaining optimization of
individual bundles have been found.

13A genetic algorithm applied on a fuel bundle optimization problem would widely follow these
few steps, words in italic are biology parallels: 1. Stochastically generate a large number of bundle
designs, a population. 2. Convert the bundle design to a string of values, a genome. 3.Evaluate the
designs and calculate their respective fitness values according to an objective function. 4.Discard
the worst X percent of the population, survival of the fittest. 5.Stochastically combine genomes
of the survivors, breeding. 6.Impose some random mutations on the property strings. 7.Return to
evaluation stage with the new generation of designs. After a set number of times or when a desired
objective function value is reached, the program can terminate and the best design be presented.
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Existing Optimization Strategy

2.1 Outline

The tool used to improve upon in this thesis is a framework of programs operating
in the following manner:

• Reference nuclear designs are entered and many new designs with grid posi-
tions individually perturbed in enrichment or BA are generated from them.

• Perturbed designs are sent to a 2D lattice code running on a cluster to perform
calculations.

• Result data is extracted from files to form sensitivity matrices for use in a
commercial simplex program.

• Sensitivity matrices enter into an optimization module in a commercial simplex
program where their values are used as constraints for an optimization BA and
enrichments; linking these values to bundle parameters.

• Simplex optimizer evaluates designs and outputs the values of decision vari-
ables which, in its approximated model, correspond to the optimal design.

The optimization code written in proprietary Optimization Programming Language
(OPL) implemented on IBM’s CPLEX optimizer. The idea behind this strategy
is that the effect of a number of combined perturbations can be reasonably well
approximated by the sum of their individual contributions to any fuel parameter.
The optimization strategy used is extremely versatile and it provides an exhaustive
search of the solution space thanks to simplex implementation. It can not only
produce a solution but also compare its objective function to an approximation of
the objective function of the global optimum.

The framework used in the project optimized the design in two distinct steps: the
first step took a fixed enrichment distribution reference without BA to optimize BA
positions with regard to bundle parameter constraints and optimization objectives,
the second step fixed these BA positions to optimize the enrichment in each fuel
rod and the Gd concentration in the BA rods. The reason for this division of tasks
had been that both approximation errors and computing times became very large
in experiments for this larger more general problem. A more detailed justification
for this approach will be given in Section 5.1.1. The first step had been evaluated
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in some detail and measures had been taken to mitigate approximation errors, the
second step was however untested by the intended users (the problems concerning
this are explained in Section 3.2.1). The simplex implementation of the two steps
in CPLEX was slightly different. The perturbation variables for Gd position and
concentration in step 1 were integers taking of dimensions rod number and Gd-
concentration, thus taking the value 1 at combinations that were true and 0 where
they were false. The second step instead formulated linear decision variables as
floats, ∆-enrichment and ∆-Gd, the resulting variables for chosen enrichments and
Gd concentration were however limited to certain allowed values, effectively making
these variables binary as well.

To represent the actual physics in the reactor a large number of constraints
are needed to link the decision variables of enrichment and BA distribution to real
parameters such as k∞, the fuel rod relative power distribution, internal power
peaking factor (Fint) and R-factor. The key limitation using a simplex model is that
these constraints have to be expressed linearly. In the results section an analysis of
the linearization errors associated with these approximations is presented.

Linear perturbation terms are computed by running a large number of possible
perturbations in the design through a 2D lattice code obtaining values of the relevant
parameters P and k∞. From this, sensitivity matrices (S-matrices) are generated:
as an example the enrichment S-matrix element for k∞ perturbation in a certain rod
is computed in the following manner.

• A reference design is entered into the 2D lattice code.

• Two designs, where the enrichment in the specific fuel rod is changed to the
maximum allowed enrichment and lowest allowed enrichment respectively, are
entered.

• k∞-values extracted from the 2D lattice code output and the difference between
the maximum and minimum cases is computed and divided by the enrichment
difference.

• The value ∆k∞
∆U

is computed and entered into an S-matrix file (in this project
an Excel-file).

The S-matrix elements for the relative fuel rod power distribution are calculated in
a similar way but here S-matrix elements for one perturbed fuel rod position are
calculated for both the specific rod where the perturbation is done and for all other
fuel rod positions in the bundle. For a typical fuel bundle there are 52 rods (taking
symmetry into account) with 3 axial slices (their number can be chosen freely but 3
are always used in this project since it is the minimum required to correctly model
partial length rods) for which perturbations need to be calculated. Computing the
S-matrix elements therefore requires 315 simulations for the enrichment alone (a max
min run for every position, plus three reference runs). Fortunately the core simulator
runs on a cluster and will therefore usually calculate 10-12 cases simultaneously,
finishing the entire process in less than 10 minutes. The resulting sensitivity matrix
for k∞ has 52 elements for every burnup step considered. The parameters R and
P are rod-wise properties which mean that there will be one sensitivity matrix for
every axial segment of every fuel rod. Pin power sensitivity matrices take into
account every other rod in the same slice which gives 52 · nbu (number of burnup
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steps) elements in every matrix. R-factor calculations are done by sub-bundle which
means that the size of the S-matrices for R follow the number of independent fuel
rods in the sub-bundle in question1. These figures are indicators of the size of the
problem and explain why these simplex optimizations typically have around 100000
variables. The S-matrix files are read by the simplex program (CPLEX) and the
sensitivity matrix elements are implemented as linear programming constraints in
between “true” decision variables enrichments and Gd concentration on one hand,
and the result decision variables such as k∞ and P 2.

Upon starting the project the actual mechanics of generating S-matrices and
putting them into excel sheets was very cumbersome, but since the data management
is not a focus of this thesis no greater effort has been made to alter it.

2.2 Constraints and objective

To connect the decision variables used by CPLEX to each other and the constants
describing the problem a long list of constraints is needed, the constraints can be
divided into four different classes.

• Constraints representing the approximations for bundle physics parameters.

k∞ = kref∞ +

nU∑
i

(∆iU · SU
i ) +

nGd∑
j

(∆jGd · SGd
j ) (2.1)

Meaning that the k∞ value in the bundle is equal to the reference bundle
k∞ plus the sum of the changes in Uranium enrichments rodwise multiplied
by S-matrix elements plus the sum of changes in Gadolinium concentrations
rodwise multiplied by their S-matrix elements over the BA rods.

• Constraints describing actual constraints on parameters in the model.

max(Pi,z) < Limit (2.2)

• Constraints representing fabrication constraints, such as maximum number of
enrichments utilized.

• Logical constraints, such as ”one and only one enrichment per rod position”,
to eliminate bogus solutions.

The distinction between the first two types of constraints if for convenience, they
could very well be combined into the same equations but on a problem of this scale
that would make the OPL code much less readable without making gaining anything
in optimization time. The objective is the decision variable that CPLEX seeks to
minimize (or maximize), it must be a real scalar but that can in turn for example
be a sum of several variables or a maximum of a vector in some interval. The most
common objective in this project was minimization of the bundle R-factor. A glance
of the CPLEX progress window is seen in Figure 2.1. An optimization following the

1R-factor calculations do take into account the power of other sub-bundles, but through a scalar
“mismatch factor”, therefore there are either 14 (NW&SE) or 24 (SW) S-matrix elements for every
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Figure 2.1: Part of the CPLEX window showing parameters of a running optimiza-
tion and its progress. The user can view the progress of an optimization with its
incumbent solution and an estimated bound of the global optimum, the difference
between the two is referred to as the gap.

described framework runs in CPLEX until the ratio of the best found objective func-
tion value to CPLEX’s estimate of the global best value comes within a prescribed
”gap tolerance”3. When the optimization terminates the design associated with the
best objective function value is post-processed and exported, its most important
parameters are of course the enrichment and/or BA profile.

burnup step.
2In the CPLEX implementation, variables such as k∞ and ∆Gd are not fundamentally different;

they are both treated as decision variables for CPLEX to assign values to. Through constraint
equations using S-matrix values these decision variables are linked by the linear equations formu-
lated.

3During a minimization the best found value will decrease as new better designs are found, and
the estimate will increase as more and more branches are evaluated and their actual best values
are found.
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Method

3.1 Research Questions

The project broadly followed the topics of a set of research questions.

• Can a linear approximation of the constitutive relations in a nuclear fuel bundle
through a simplex optimization generate potential nuclear fuel bundle designs?
How does the existing scheme perform and how can it be improved?

– How do the initial conditions of enrichment and BA weights specified in
the reference affect the outcome?

– How do results from such an optimization compare to “manually opti-
mized” designs made by nuclear engineers using perturb-and-investigate
programs?

– Is it feasible and motivated to incorporate 2nd order terms, or piecewise
linear approximations in the optimization method (thereby increasing the
size of the simplex problem) and how much would this affect optimization
time?

– Are there major simplifications that can be made?

• Are there optimization problems associated with reactor cycle length?

• How much engineering time can be saved with a functional optimization tool?
Which barriers hinder implementation?

• Does the optimization tool have a value beyond associated time-savings in the
design phase? Would other parties be interested in applying it?

• Is it possible to reduce the total number of BA rods in a bundle compared to
manually optimized designs?

• Can bundle design optimization be coupled with core-loading pattern opti-
mization?

• How should the project proceed?
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3.2 Project Progression

The project for this thesis was suggested by a nuclear company with a prototype
BWR Fuel Bundle Design Optimization project. The thesis was supposed to inves-
tigate the validity of the designs suggested by the program and compare these with
designs obtained by nuclear engineers using manual trial-and-error schemes to pro-
duce a recommendation for further development of the tool. To pursue the strategy
knowledge would have to be gained in the theory and programming of optimization.
This was the initial method used but due to the prototype nature of the program a
two-prong strategy was used: optimizations would be run from start to finish while
error-checking and obtaining a functioning strategy to finally use this strategy to
run optimizations on cores where manual designs had already been made. Using
these as a benchmark the performance of the optimization scheme could then be
evaluated, conclusions could be drawn and recommendations formulated.

3.2.1 Practical Issues

Using the prototype optimization framework proved harder than expected for a
number of reasons. Unnecessarily complicated data handling made the system error-
prone and although several modifications were made to improve it the focus of the
project was not to produce a production-ready program so most of the programs
involved were only modified rather than replaced.

During the project it was found that the optimization framework contained some
unfinished areas and errors. Some of the issues were:

• Optimization step 1 could functionally optimize BA placements but the en-
richment and Gd concentration optimization in step 2 was hard-coded for a
single case of BA placements.

• Symmetries were not fully utilized. In the S-matrix generation full bundle
(i.e. without diagonal symmetry) calculations were used. The result of an
off-diagonal perturbation was then expressed as the sum of the response of
the two symmetric positions in lower left half and the upper right half of the
bundle. This way some accuracy is lost for positions close to the symmetry
diagonal since interaction between the perturbed positions makes for non-
additive results.

• No functionality to control average enrichment.

• Some errors were present in R factor calculations, including weighting factors
and faulty linearizations.

• k∞ profile in the enrichment optimization step (step 2) could not be determined
but was instead constrained only so that the starting value from step 1 did
not change. This made it impossible to define a desired k∞ profile while also
making the problem artificially seem much smaller than it was.

• Pre- and post-processing features in CPLEX not fully utilized.

• The only initially available CPLEX computer was very slow and its program
version old, making full sequences of optimizations for relevant burnup lengths
nigh-impossible to run.
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3.2.2 Improving the Approximations

During the project the main body of work concerned several methods of improving
the accuracy of the model to evaluate how optimality could be improved. The results
of these investigations are covered in the results section and they included.

• Piecewise linear approximations of characteristic parameters.

• Adapting input reference cases to match the desired design as much as possible,
without loss of generality.

• Quadratic approximations for bundle design parameters.

• Shadow-factor correction for k∞ approximations in step 1 extended to step 2.

• Omitting R-factor calculations entirely, instead replacing them with relative
pin power targets.

3.3 Two Optimization Cases

To test the application feasibility of the optimizer a complete study on two reactors
was performed. The design characteristics for the two reactors are very different,
making them good candidates for an optimization benchmark.

Type Short-cycle reactor Long-cycle reactor
Power Output 857 MWe 1102 MWe

Bundle average enrichment 1 3.41 w/o U-235 4.15 w/o U-235
Cycle length 12 months 24 months

Bottom Slice enrichment 3.62 4.41
Middle slice enrichment 3.64 4.48

Top slice enrichment 3.57 4.44
Enrichments used 2.0, 2.8, 3.2, 3.4, 3.8, 4.4 2.8, 3.8, 4.2, 4.6, 4.95

Gd positions per slice 8, 8, 8 15, 15, 14
Gd concentrations (%) 3 5, 7
Optimization objective Minimize Fint Minimize Rmax

Table 3.1: Design features for two commercially offered fuel designs used as opti-
mization criteria.

The bundle design guidelines in Table 3.1 come from core-level optimizations
in real fuel designs which make them suitable for use as benchmark cases for the
automatic optimization. The bundle enrichments used in the designs were set as
constraints to the optimizer, along with the number of gadolinium rods and con-
centrations. To obtain the right k∞ profile the properties a and b, explained in
Section 1.1.5, were extracted from the designs and set as constraints for the op-
timizer. The objective variables of the designs were set as target variables in the
automatic optimizations.
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Chapter 4

Apparatus

4.1 S-matrix hardware and software

4.1.1 Hardware

The nuclear calculations for bundle parameters were done on a local UNIX cluster,
generally it allocated 10 or more cores to the perturbation computations necessary
for S-matrix generation.

4.1.2 Software

Apart from the licensed 2D lattice code PHOENIX a number of other programs were
used on the cluster: a local program that took 2D pin powers to calculate R-factors
as well as MATLAB for simulations of R-factor behavior and enrichment inputs.
The output files from the simulator were read and S-matrix elements calculated by
locally developed FORTRAN scripts, which were eventually re-written. The output
files from these scripts were later exported into Excel file format using Excel macros,
these Excel files could in turn be read by CPLEX for optimization input.

4.2 Simplex optimization hardware and software

4.2.1 Hardware

Initially the CPLEX optimizations were run remotely over the Atlantic on a 10 year
old desktop computer with a 2 GHz dual-core Intel processor and 2GB RAM.

At the end of the project a new remotely operated computer was installed, this
machine had two processors with 4 dual-thread 2.4 GHz processors each for a total
of 16 CPLEX threads on 32 GB RAM.

4.2.2 Software

The proprietary simplex optimization suite CPLEX was used throughout the project.
CPLEX is an IBM program with an associated proprietary optimization program-
ming language OPL. The codes available at the start of the project were written in
OPL and executed in CPLEX 12.2.
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4.2.3 Equipment upgrade

Along with the new hardware that became available late in the project a newer ver-
sion (12.6) of CPLEX was installed: this version had improved heuristics and when
supplied the same problem as the old one it reported a different size of the resul-
tant matrix. The impact from upgrading hardware and software was immediate and
positive bordering on painful. The computation time needed to find one possible
solution (although not the optimal by far) for an enrichment optimization problem
decreased from 17 hours to 4 minutes. Before this upgrade it had not been possible,
using the available framework, to run optimizations on full cycles and experiments
were limited to investigation of approximations rather than comparisons to manual
designs. After the new machine was installed it became possible to optimize en-
richments for full cycles and to consider any extensions of the project calculating
parameters more efficiently.
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Chapter 5

Results

5.1 Evaluating the framework

A considerable part of the project concerned the evaluation of the framework previ-
ously developed described in chapter 2 and specifically the effects of the linearization
employed in the optimization. This had not before been well investigated and a re-
view was necessary to improve the framework.

5.1.1 Two-step approach

One important study was to investigate whether the two-step approach taken in
previous development was indeed necessary. It was found that perturbation matrices
for all elements change dramatically when BA is present (see Table 5.1) so the fine-
tuning of enrichments and BA concentrations was easier to do with BA positions
locked1.

S-matrix case Without neighboring BA With 6 % neighboring BA
∆k∞ , enrichment change 0.00275 0.00388
∆P , enrichment change 0.456 0.392

Table 5.1: Impact of adding BA in one rod on enrichment S-matrices in a diagonally
neighboring rod. The effect on perturbation calculations in neighboring rods is
significant in both k∞ and P , justifying the separation of optimization into two
steps. Full data for perturbations with and without BA is found in Figure A.1

.

The data in Table 5.1 concerns S-matrices for k∞ and relative power P and
how these change. The second column values concern perturbations in uranium
enrichment in a gadolinium-free environment, whereas the third column values are
from the same perturbations in an environment where gadolinium is present in a

1The effects of enrichment perturbations in BA rods could be accounted for by calculating them
for situations without BA but the effect on neighboring rods would be too big to accommodate.
Although the absolute errors on k∞ are small it must be noted that this parameter is scalar and
contributions from all rods are summed up giving a prospect of large error propagation. With
this justification a division of tasks was implemented but of course it did mean that the risk of
sub-optimization increased.
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neighboring rod. It is clear that the introduction of gadolinium changes the S-
matrix elements for enrichment perturbations quite substantially, and this warrants
the division of tasks used in the optimization: where BA placements are handled
by themselves so as to not affect the accuracy of calculations concerning enrichment
variations.

Second step issues

As aforementioned the second CPLEX optimization step concerning enrichments
and Gd concentrations had not previously been well-tested and a substantial effort
(re-writing a few hundred lines of code) had to be made to generalize the data
handling and constraints since these had been hard-coded for a reference case with a
certain set of BA rod types and positions. Introducing variables for BA rod types and
positions required some work but did neither change the result nor the execution of
the hard-coded reference case, therefore full optimizations could continue for any BA
geometry using the re-written code representing the same fundamental equations.
Something that did change the computation time was a change in how the k∞ profile
in the second step was limited, the code received at the onset of the project limited
k∞ at 0 burnup to within a very small (100 pcm) interval around that of the reference
design, which basically prohibited the second step from doing any major changes to
the design as these would violate this condition. This criterion did not reflect the
nuclear design process and was instead replaced by criteria on two parameters: the
difference in k∞ at 0 GWd/tU burnup which would result from removing all BA in
the design, called a, and the burnup at which maximum bundle k∞ occurs, called b.
These values, along with the average enrichment, are required to fully constrain the
k∞ of the bundle and were therefore approximated in the simplex model. Rewriting
the program so that k∞ followed conditions on the a and b parameters meant that
many more designs became possible and the calculation time increased by more than
one order of magnitude.

5.1.2 Symmetry issues

The existing optimization model uses diagonal symmetry, as described in the theory
section. However, the perturbation matrices were generated with full-bundle cal-
culations making perturbations only in the lower-left half. The results from these
perturbations in the lower and upper half was added, i.e. the S-matrix value for
a change in rod position (I,J) is set to the sum of the result in positions (I,J) and
(J,I). For k∞ which does not have a position dependence the consequence will be
that the results of a perturbation will simply be doubled to account for the effect
on the upper half.

The hypothesis in this project was that this was an unnecessary simplification;
actually making the calculation process more cumbersome and less accurate.

Consider first Gd perturbation in rod position (9,2): an assumption of symmetry
(maintained throughout this project and justified in the Section 1.3.1) means that
the same perturbation should be present in (2,9). These rods are far apart from each
other and their interaction can be assumed to be small. However, consider instead a
perturbation at (3,2), implying the same perturbation in (2,3): these two rods border
each other diagonally and it should be expected that the drop in neutron flux and its
effect on k∞ from these two changes will not be twice that of an individual change.
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The result of these perturbations can be seen in Table 5.2 where a BA-free reference
with k∞ = 1.37557 has been perturbed symmetrically (on both sides of the NW-SE
diagonal line of symmetry) and asymmetrically (only below the line of symmetry)
and S-matrices have been calculated from this; the asymmetric perturbations were
multiplied by two as in the original optimization code. If all rods were independent
of changes in other rods then the effect of symmetric perturbation would simply be
twice that of the symmetric and the S-matrix elements would be equal.

Type perturbation Far apart Bordering nodes
Symmetric 1.30054 1.31372

Asymmetric 1.33847 1.34145
S-matrix symmetric -0.07503 -0.06185
S-matrix asymmetric -0.07422 -0.06824

Error from asymmetric perturbation -1.08 % 10.3 %

Table 5.2: Effects from adding burnable absorber in mirror rods close together or far
apart and calculating k∞ at 0 GWd/tU with symmetric or asymmetric perturbation.
BA-free reference = 1.37557.

The effect of a perturbation, one that will always be symmetric, is not well
represented by doubling asymmetric perturbations for k∞. The effect on bordering
rods (mirror rods that also border each other, such as 3,4 and 4,3) is expected as
the effect on k∞ from addition of two Gd rods close to each other is not quite
twice as strong as just applying symmetry in the equation, due to a shielding effect.
The effect on the far separated nodes is less obvious, it seems the effect of two Gd
perturbations is greater than the sum of its parts2. Regardless of the reason for it: it
is evident that an asymmetric perturbation calculation is not a good representation
of the problem at hand.

The data-handling and S-matrix calculations were changed to account for sym-
metric perturbations and introduced into the framework. This removed previous
programming that accounted for whether a rod was on the diagonal or not and
whether it should be doubled, since all rod perturbations became equal when per-
turbations were done symmetrically.

5.1.3 Average enrichment implementation

Average enrichment in a bundle depends on both uranium enrichments and Gd
concentrations, see Equation 5.1. The latter affect average enrichment since a rod
with high Gd content contains less uranium and its enrichment thus weighs less on
the average (with for example 9 % mass fraction Gd2O3 only 91% of the fuel rod
weight is related to uranium).

ε =

∑n
i εi · li · (1− cGd

i )∑n
i li · (1− cGd

i )
(5.1)

ε is the average enrichment in the bundle while εi denotes the enrichment in rod i,
cGd
i its Gd concentration and li its length. In this equation Gd concentration effects

on the density of the rods have been neglected. In a simplex implementation the

2It could be related to asymmetric designs having lower k∞ than symmetric ones
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average enrichment should be present as a constraint on the problem; this can be
visualized by defining a decision variable depending on enrichment and Gd concen-
tration and limiting this to be within a tolerance interval of deviation around the
desired enrichment. Since this equation is not linear it has to be modified to be able
to implement in a simplex optimizer, in this project the easiest route was taken:
simply using the reference Gd concentration in the denominator omitting the de-
pendence on changes in BA content, thus the problem of dividing decision variables
with each other was eliminated and a linear implementation obtained3.

5.2 Improving approximations

The lion’s share of the project was devoted to improvement of the approximations
and methods used in the optimizer to account for the characteristic bundle param-
eters. Given the constraints imposed by linearity two main types of errors were
expected to be encountered: local non-linearities, that the effect of changing a pa-
rameter in a node was not linear, and cluster effects, that the effect of several changes
was not equal to the sum of its parts. The tools available to the simplex program at
first seemed limited and two ”strategies” were considered: looping the optimization4

and improving the framework and approximations.

Looping

Looping the optimization is a very crude way of improving results. It entails running
an optimization with low tolerance, accepting the solution as a reference, calculating
new perturbation matrices and running the optimization again. This can be repeated
as many times as necessary until the discrepancy between PHOENIX results and
model results diminishes below an accepted value. A major risk is that this partition
leads to sub-optimization by locking on to a poor path. In reality the only increase
in accuracy from repeating the optimization will come from the smaller absolute
changes done in the CPLEX step. It was found that the main gain from running
an optimization twice was that the second run can be done without the result and
reference average enrichments and gadolinium levels differing very much, that the
initial guess becomes ”better”. This can however be done much more easily before
the first step even starts, see Section 5.2.1. Any repetition of the framework was
therefore discarded, especially considering that the CPLEX run-times were often
measured in hours.

5.2.1 k∞

The most thoroughly examined fuel design parameter was k∞. Due to its scalar
nature that takes contributions from an entire slice into account it is more easily
graphed than the fuel rod properties R-factor and relative pin power.

The effects on k∞ from uranium and BA changes are quite different in nature;
Figure 5.1 shows the bundle k∞ as a function of varying uranium enrichment in one

3It was late in the project suggested that accounting for BA effects on average enrichment
could be omitted altogether and possibly speed up optimization, this was not done to keep results
comparable.

4This was not a very clever or promising strategy, but was investigated nonetheless.

34 Chapter 5 Anders Haulin



Nuclear Fuel Bundle Design Optimization using a Simplex Method

2 2.5 3 3.5 4 4.5 5
0.903

0.9035

0.904

0.9045

0.905

0.9055

0.906

0.9065

0.907

0.9075

k
∞

Pin enrichment effect on k
∞

, 8 samples

Pin enrichment level (%)

Figure 5.1: Bundle k∞ effect from enrichment changes, 8 samples.

fuel rod from 2.4 to 4.95 %. As can be seen these effects are reasonably linear.
Burnable absorber is harder to model using linear assumptions; Figure 5.2 shows

the effect on k∞ from a BA addition of 2-8 %. Note that there is not only a strong
curvature but the curvature undergoes sign changes during the burnup interval stud-
ied. This is due to the depletion of BA, where its effect virtually disappears. Dif-
ferent BA concentrations have different depletion times, at a certain burnup a low
concentration of BA may be almost fully depleted whereas for a high concentration
a large part of its effect still remains. The effect on k∞ from BA perturbations
is much less linear that from enrichment changes, this increases the risk of poor
approximations in a simplex implementation.

Choosing a reference case

The reference case plays a great role in the accuracy of parameter estimations. Fig-
ure 5.3 shows the real and estimated values of k∞ in two step-2 optimizations both
targeting a slice enrichment of 4.48 % 235U: the top one uses a reference design with
an average enrichment of 4.40 % 235U whereas the one at the bottom uses 3.95 %
235U. It is to be expected that identical perturbations on different reference designs
will generate different S-matrix elements, in Table 5.3 it is shown how sensitivity to
BA changes differ depending on its enrichment level. The higher reference enrich-
ment in the bottom case means that its k∞ is greater which could explain a greater
S-matrix element. Although the differences are small it must be noted that these
are effects from individual rods on a bundle parameter and thus the combined error
can become significant.

The k∞ approximation errors from two optimizations can be seen in the two
right panes of Figure 5.3; the errors have different signs but a very characteristic
form present in all optimizations featuring BA changes. The optimization in the
top design featured a +1 % Gd change in 3 rods and a -1 % change in 11 rods. The
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Figure 5.2: Bundle k∞ (y-axes) effect from Gd concentrations (in % on x-axes)
changes, 7 samples in each subplot. The subplots represent different burnup steps
studied, from 0 GWd/tU (fresh bundles) to 21 GWd/tU (Gd virtually burnt out)
and exhibit different types of curvature.
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Figure 5.3: The level of discrepancy between reference and target designs plays a
large role in the accuracy of CPLEX approximations. Note that the scale of the
errors in the bottom case is 4 times larger than the top case.

Enrichment k∞ at 4% Gd k∞ at 8% Gd S-matrix
3.89% 235U 0.86308 0.86031 -69.25 pcm/%Gd
4.32% 235U 0.94929 0.94635 -73.5 pcm/%Gd

Table 5.3: k∞ (at 0 burnup) and corresponding S-matrices from BA perturbations
in rod (2,2); note that the rod perturbations are the same but the difference in
enrichment background creates a difference in the S-matrix.

optimization in the bottom design featured a +2 % Gd change in 14 rods and a -2%
change in 5 rods for a large total BA addition.

Combining the knowledge from Figure 5.2 and the aggregate changes in Gd
concentration it can be argued that the majority of this error comes from BA. It
can be seen in the bottom pane that CPLEX at first overestimates the effect of the
BA addition by showing a much lower k∞ value than the actual, an explanation for
this could be the marginally decreasing effect that rod increases in BA contribute
(increasing BA in one rod keeps k∞ low for longer but the effect of several increases
is not the sum of its parts). This initial overestimation of BA effect can then bring
with it an underestimation of remaining Gd concentration later in the cycle. The
error in the top pane has a mirrored shape since the BA change is now a negative
one, the error is smaller corresponding to a smaller aggregate BA change. Both
CPLEX approximations converge on the true value further along in the burnup
sequence, hinting that the enrichment component of the error is not as significant
as the BA component. The four times larger error in the bottom panes of Figure
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5.3 can however be abated by better choosing a reference enrichment to avoid large
enrichment changes and their associated changes in BA concentration. A better
fitting reference design means that the optimization generates smaller changes in
second step and smaller errors in characteristic parameters.

Piecewise linear approximations

Modern simplex optimizers such as CPLEX or Gurobi allow the use of piecewise
linear constraints. In the eyes of the optimizer the calculations representing k∞
and other bundle characteristic parameters are merely constraints tying together
decision variables (enrichments and BA concentrations) to other decision variables
(k∞, Fint and R). Therefore a piecewise calculation could be used to represent any
bundle physics; of particular interest for this project was the effect on k∞ from BA
changes in step 25.
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Figure 5.4: k∞ values from 7 PHOENIX samples (green), linear interpolation be-
tween extreme points around the reference (red) and piecewise on each side of the
reference (blue).

The appeal of piecewise linear approximations is displayed in Figure 5.4 where
it can be seen that the error arising from linearizing typical BA behavior can be
significantly decreased by using a piecewise approximation. This implementation
better utilizes the available data, note that no new PHOENIX calculations are nec-
essary6 since the perturbation scheme calculates the two extreme points for every
fuel rod position, along with a reference case used as a midpoint7. This gain does

5k∞-errors can disqualify an optimization and BA changes are their most likely culprit.
6Additional intermediary calculations in the S-matrix machinery are however necessary, but

none involving the 2D lattice code.
7If the curve is to be divided by a piecewise linear function of more segments than two, new

PHOENIX calculations would be required.
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however come at the cost of approximating every decision variable under piecewise
linear constraints as two separate variables8: in our case one positive and one nega-
tive. This increase in variables could prove to be a problem for CPLEX and in this
implementation it does turn out to be so: calculation time increased 3-fold while
reaching a tolerance 3 times greater than using linear assumptions.

Shadow factors for aggregate BA concentration

Another approach taken to account for non-linear effects of changes in BA concen-
tration was to introduce a shadow factor counting the aggregate Gd amount in a
bundle. Such a factor would then multiply the perturbation element from BA and
decrease or increase its effect. This method was used in the first optimization step
to account for cluster effects of the total amount of BA rods. There the correc-
tion for total number of BA rods was added to the BA effect of every rod; since
decision variables cannot be multiplied with each other (a non-linearity) the binary
decision variable for Gd instead had an extra dimension, so that it was true only
for a combination of rod position, Gd concentration and total number of Gd rods9.
This would be possible to implement in step 2 as well but the decision variable for
Gd changes would need a new dimension with one row for every distinction level in
total BA amount. This situation is similar to that of piecewise linear constraints but
harder to implement which meant that after the piecewise implementation showed
unacceptable increases in computation time it was abandoned.

5.2.2 Power distribution

The power distribution calculations showed some behavior similar to k∞ with burn-
able absorber positions being most susceptible to errors. Figure 5.5 shows how the
introduction of BA into 10 positions affect the accuracy of S-matrix calculation
compared to 2D lattice code output.

Figure 5.6 shows the same differences as Figure 5.5 but later in the cycle where
k∞ peaks, it is evident (and not very surprising) that the large approximation errors
in pin powers for a fresh bundle decline greatly as the total effect of BA on the
bundle fades. This time in the cycle is the time where approximation error are most
important since it is the time at which total power output in the bundle will peak.
The errors in pin power estimation will be of great importance to the alternative
R-factor optimizations discussed in Section 5.2.3.

Step 2 optimizations exhibit smaller errors since the Gd rod positions are fixed
and thus avoiding strong coupling interaction non-linearities. In an initial state
such as Figure 5.7 the largest errors arise in the corner rods where also the power is
initially the highest (due to the greater thermal neutron flux).

Indeed correcting the errors for the local power in the rod shows that the relative
errors are all below 2 %, this can be seen in Figure A.3. The maximum absolute
errors in the middle slice without rods in the corners are smaller, as are the errors
later in the cycle at high burnup, see Figure A.4.

8Or rather as one variable with an extra 0, 1, ... , npieces dimension added representing which
piece the change in question is along.

9Additional logical constraints then had to link the total number of Gd rods to individual
true/false values.
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Figure 5.5: Pin power errors at 0 burnup, CPLEX-value minus true PHOENIX value
after a step-1 optimization. The 10 BA placements coincide with the green areas of
large positive errors.

Bottom Slice, 7.5 GWd/tU
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Figure 5.6: Pin power errors at 7.5 GWd/tU burnup, CPLEX-value minus true
PHOENIX value at the burnup point where maximum k∞ appears. This late in
the cycle the errors from BA introduction have declined considerably (compared
to Figure 5.5, note that the color scales in the figures are not the same and that
absolute error magnitudes have decreased).

The overall behavior of pin power approximations is acceptable and the strategy
of summing contributions from every rod upon every rod is working, albeit requiring
a lot of memory for perturbation matrices.

5.2.3 R-factor

The R-factor calculations proved to be the hardest part of the project to evaluate,
errors proliferated in the codes and many weighting factors interplayed to obscure
the source of every error. It was time-consuming work to obtain a licensed software,
DOFACT, of the right version that could calculate the R-factor. A MATLAB script
was also written to do these calculations and extend the cases for which R-factors
could be estimated to those with relative power distributions from other sources than
the 2D lattice code. Comparisons between R-factor values from simplex approxima-
tions, DOFACT and MATLAB were done to gauge the accuracy of optimization.
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Figure 5.7: Pin power errors at 0 GWd/tU, CPLEX-value minus true PHOENIX
value after a step-2 optimization. This second optimization step exhibits smaller
errors than the first step seen in Figure 5.5, notable however are the corner rods
where the approximation yields comparatively large errors.

The result of an optimization on the R-factor can be seen in Figure 5.8.

The four cases in Figure 5.8 are R-factor from DOFACT (green), R-factor from
CPLEX approximation (red), R-factor from MATLAB script using 2D lattice code
pin powers (blue) and R-factor from MATLAB script using linearized pin powers.

The inclusion of the MATLAB values is a form of sanity check: to assure that
the right version of the DOFACT program was used corresponding to the correla-
tion equations provided for simplex approximations. By comparing the values from
CPLEX and MATLAB using pin-powers linearized in CPLEX one can see if poten-
tial errors arise all across in the linearization scheme or only in the specific R-factor
calculations. In Figure 5.8 the four curves follow each other nicely and the error in
the CPLEX R-factor is on average smaller than the R-factor analytically calculated
from the linearized pin power approximated by CPLEX, this could be due to larger
linearization errors in P than R.

An optimization with a slightly different objective run on the same perturbation
matrices from the same reactor did however show a different behavior. Figure 5.9
demonstrates how the R-factor approximated by CPLEX differs significantly from
the true DOFACT value. By looking closely at which rods exhibited the maximum
values in these two curves it was found that the limiting rod in CPLEX’s imple-
mentation was not the same as the one in DOFACT and that the limiting rod in
CPLEX was one that had a higher additive constant than its neighbors but lower
pin power.

Minimum-value simplification

The linearization scheme for the bundle R-factor was thus found to be faulty in a
non-trivial manner. The equations for the R-factor, 1.4 to 1.7, were expressed in
the introduction and of special importance is the neighbor weighting functions like
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Figure 5.8: R-factors: Red = CPLEX, Black = R formula for CPLEX approximated
pin powers, Green = DOFACT, Blue = R formula for PHOENIX pin powers.
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Figure 5.9: R-factors: Red = CPLEX, Green = DOFACT.
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5.2 (same as Equation 1.6).

SJj = min

(
nj∑
j=1

WJj · (rj,s,z)1/2, (ri,s,z)
1/2 ·

nj∑
j=1

WJj

)
(5.2)

In this equation SJj is an input term used in the calculation of the R-factor (Equa-
tion 1.4), rj,s,z is the relative power of a node (Equation 1.5)and WJj is a weighting
factor for neighboring rods that varies by the fuel and the dryout correlation used.
Equation 5.2 includes a minimum value calculation, a non-linearity. In words it
says: if a node has a higher relative power than a weighted average of its neighbors’
powers, choose the first sum and if it is lower than the weighted average of its neigh-
bors, choose the second. The physical reason for this is to limit the effect of high
isolated pin powers in Equation 1.4 to make the model comply better with observed
CPR performance.

This nonlinearity was eliminated in the existing model by arguing that the inter-
esting parameter is the limiting bundle R-factor R-max and this value will be found
in a node that is hotter than its neighbors, otherwise it wouldn’t be R-limiting.
Thereby the first sum should always be chosen as long as minimizing R-max re-
mains the objective. This had been stated in several reports throughout the project
but it can be proven faulty by noting that the R calculation in Equation 1.4, apart
from nodal power, also has a nodal dependency on the additive constants Ii.

In any power distribution there will be a number of rods where the relative power
is lower than average power in the neighboring rods, situations will therefore occur
when the simplex algorithm overshoots the actual R value. The rod in question gets
a false contribution to its R-factor by using the neighbor average pin power function
instead of the lower value of its own. Since the minimum-function occurs separately
for side and diagonal neighbors; errors can arise in both functions independently.
Figure 5.10 shows how this approximation is very inaccurate for low-power rods,
such as BA rods early in the cycle. These large overestimates can be explained
by the minimum value simplification but any underestimates as can be seen to a
smaller degree must have other causes arising from the rest of the linearization
simplifications.

This large error in very low-powered rods does not affect the interesting param-
eter R-max. However the original approximation is faulty and dangerous since it
rather often happens that a node with lower power than its neighbors can be R-
limiting. This is due to the influence of additive constants describing individual fuel
rod dryout sensitivities10. A fuel rod position having a greater additive constant
than its neighbors can be R-limiting even at a lower pin power than the weighted
average of its neighbors. Some areas of the fuel are especially sensitive to this as
they have significantly larger additive constants than their neighbors.

The result of this error is what is seen in Figure 5.9 where the true maximum
R-factor is compared to the approximated value. The part of the error attributable
to the faulty elimination of the min-value clause is by nature positive so the actual
R-factor will be lower than the optimizer suggests (other errors positive and negative
can arise from other parts of the linearization). The fact that this is conservative
does however not eliminate the problem, since the error will vary between designs
and the simplex algorithm won’t find the best designs with the lowest R-factor.

10The exact values of these additive constants are not important, the significant detail is only that
their values within the sub-bundle vary enough to enable significant errors in the R-approximation.
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Figure 5.10: R-factors by rod number for an initial state of 0 burnup: Red = CPLEX,
Green = DOFACT. Note the large positive discrepancies in low power nodes where
BA is present (shown be vertical lines).

The minimum value non-linear equations can actually be implemented in CPLEX
but subsequently optimizing R-max then involves finding a maximum value amongst
many minimum values, which is hard and requires branching for every case [25]. An
attempted optimization using this method yielded a worsened actual (calculated by
DOFACT) R-factor than the simplification, after 16 hours of computation instead
of the already substantial 2 hours used by the simplified method.

Omitting R-factor approximations

As has been demonstrated in the previous sections, approximating k∞ and Fint for
use in a linear optimizer is quite a lot easier than linearizing R. Linearizing the first
two parameters from PHOENIX outputs brings errors, especially for large changes
in enrichment or Gd concentration, but the R factor is itself a derivative of pin power
determined by non-linear equations. These non-linearities are the square-roots and
discrete minimum conditions in the dryout correlation. Approximating this function
to accommodate it in CPLEX brings with another layer of linearization errors, and
computational challenges.

Late in the project an alternative approach was evaluated. This was that the
R-factor depends on the pin power distribution in such a way that there exists at
least one pin power distribution that will produce a uniform R-factor across the
bundle. To find this power distribution for a geometry of interest a script was
developed that calculated the R-factor for a uniform power distribution and then
gradually increased power in low R nodes and decreased in high R nodes, all the
while maintaining the average relative power at 1. After several loops the power
distribution stabilized at one corresponding to a flat R distribution, this was done
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Figure 5.11: A pin power distribution that generates a flat R-factor of 0.8864, bottom
segment.

in conjunction for all three axial slices and the bottom slice component can be seen
in Figure 5.11.

Whether this distribution is unique, or whether the uniform R-factor associated
with it has a lower maximum value than all other distributions (if or not there ex-
ists a distribution with a lower R factor in all nodes), cannot be said with absolute
certainty because of the many logical conditions in the equation. This was however
investigated using stochastic perturbations and despite trying several thousand al-
terations none yielded a lower maximum R-factor. The R factor obtained with this
method can therefore at least be said to be very good with its maximum of 0.8864
and approaching its associated power distribution can be a feasible method of R
optimization. An issue with rod-by-rod target compared to a full evaluation of R
including neighboring rod effects is that the margin present in neighboring rods can-
not directly be utilized, the rod with the largest excess relative pin power might be
”saved” by lower values in neighboring rods so that it is not actually the R-limiting
rod in the bundle. An optimization targeting relative power deviations will however
target this rod for decreased enrichment instead of the actual R-limiting rod, thus
hampering the efficiency of the optimization. A graphical representation of devia-
tions from optimal power distribution (stochastically generated in MATLAB) and
associated R-factors is found in Figure 5.12. The X-axis represents the maximum de-
viation from the optimum pin power distribution, this is a parameter that a simplex
method can optimize against, thereby bringing its value as low as possible. An opti-
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Figure 5.12: A set of stochastically perturbed pin power distributions graphed by
their maximum pin power deviation and their R-factor.
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Figure 5.13: A set of stochastically perturbed pin power distributions graphed by
their maximum axially weighted pin power deviation and their R-factor.

mization on deviation can be likened to a vertical line in Figure 5.12 being brought
to the left, it will not see any difference between designs along such a vertical line,
but they might have very different R-values. Since the R-factor in a rod is a result
of an axial weighting from its slices the deviation from optimum can be corrected for
the lengths of the rods and their weight in the CPR correlation (top slices tend to
be weighted more strongly than bottom ones). The correlation could be improved
even more by computing a sum of deviations in the axial segments of every rod.
The optimizer could then compensate between segments of a rod allowing a colder-
than-optimal segment of a rod to balance a hotter-than-optimal one. Figure 5.13
shows the deviations in Figure 5.12 corrected for rod-wise axially weighted sums of
deviations. This should increase the correlation found in figures 5.12 and although
the distribution gets a bit more concentrated the effect is marginal in these purely
stochastic deviations (an optimizer can however seek out the cases where positive
and negative cancel each other). This sum can, just as individual deviations, be
targeted for minimization in the simplex implementation; the optimizer will then
indirectly minimize the R-factor.

For an optimization strategy targeting relative power distribution to be perfectly
effective there needs to be a bijective correspondence between the properties of
maximum pin power deviation and maximum R-factor. As can be seen in figures
5.12 and 5.13 this is not the case (at least partly due to not utilizing the margin
from neighboring rods that was previously explained) but it is clear that small power
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deviations have a smaller distribution of corresponding R-factors. Furthermore it
is possible (although not in this project’s form of implementation) to post-process
a number of the best solutions from the optimizer and calculate their real R-factor
at a low computational cost, thus choosing the best design from a set with similar
power deviations.

Implementing this optimal power distribution P ?
z,i in the CPLEX optimizer was

done by defining a decision variable as in Equation 5.3.

(Pz,i,m − P ?
z,i)− dev < 0 (5.3)

Where m is the burnup step considered for minimizing R, nz is the number of slices
and dev is the decision variable targeted for minimization. Depending on constraints
this method could produce solutions more or less close to the optimal value. With
a correction, such as in Equation 5.4, the optimization could account for different
weighting factors between axial slices (but not the interaction between different axial
segments of the rod) and target the largest .

(Pz,i,m − P ?
z,i) ·Wzz − dev < 0 (5.4)

This manner of R-optimization yielded a substantial improvement in optimization
speed compared to R-approximation, but the R-factor actually worsened, see Table
5.2.3. To make the optimization to R from relative pin power distribution as good as
possible the minimization target was set as the weighted sum of the axial deviations
in each rod, Equation 5.5, this implementation corresponds to the distribution in
Figure 5.13. (

nz∑
z

(Pz,i,m − P ?
z,i) ·Wzz

)
− dev < 0 (5.5)

One could expect that excess power in the bottom of the rod could then be offset
by a lower power in the top, or vice versa, paving the way for a lower R-limitation.
Although this assumption turned out to be true the time required to optimize it
also exploded: see Table 5.2.3.

Optimization target Tolerance Time required Deviation Real R
Equation 5.3 0.01 % 3 h 59 min 0.0747 0.9130
Equation 5.4 0.01 % 47 min 0.026 1 0.9166
Equation 5.5 0.1 % 32 h 51 min 0.0463 0.9056

R approximation 0.01 % 4 h 30 min - 0.9093
1 0.12406 without weighting factor, as figure 5.12 is displayed.

Table 5.4: The two pin power strategies compare to the R approximation
strategy, note that the deviations are different since the second strategy
computes the sum of three deviations in a rod. The deviation values
correspond to vertical lines in figures 5.12 and 5.13 and corresponding
R-factors should possible to find on this line.

The comparison in Table 5.2.3 to the design obtained by R approximation shows
that the pin power deviation minimization can indeed generate a superior design
but at a high cost in calculation time. The reasons for this have not been firmly
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established but it could be due to the greater number of variables considered in the
optimization.

In the calculations of Table 5.2.3 several constraints applied to the optimization
besides the optimization target function; one of these was a constraint on LHGR (see
Section 1.2.3): effectively one on Fint on the bundle level. This constraint depended
on burnup and in the optimization interval it was as low as 1.19 while the optimum
corner rod power was 1.3276. This constraint inhibits the optimization and makes
it harder to reach optimal power profile in Figure 5.11. By forcing rods to remain
colder than their optimum it is possible that the coupling between optimizing power
profile and optimizing R-factor weakens. A possible way of improving this is to
incorporate the limitation on LHGR in the generation of an optimal power profile,
thus this profile will depend on the constraints and needs to be re-generated if the
constraint or targeted burnup interval changes. This condition did not however
change the optimum power profile much outside the corner rods, and the ”penalty”
to the R-factor was small as it rose from 0.8864 to 0.8870. It became clear that
including the constraint did not however improve the optimization, the optimizer
reached R = 0.9058, or just above the previous best value, but CPLEX was not
even approaching termination after 48 hours and 7583022 iterations so the idea was
discarded.

5.3 Optimized layout results

The previous sections concerned the methods used in optimization and the improve-
ments that could be done to these. The questions of errors prevalent in the CPLEX
optimization are important but the main objective or the optimization framework is
to speed up the fuel design process and therefore a study comparing automatically
optimized designs to those made by nuclear engineers using experience, trial and
error was conducted. The method and the cases for this study were described in
Section 3.3. The alternative methods for calculating the R-factor discussed in Sec-
tion 5.2.3 were not implemented in these optimizations as a time-efficient method
for this had not been found.

5.3.1 BA rod position optimization

The first step in these optimizations was to generate a reference design to start
the process from. This reference design had previously been one with maximum-
enriched in all non-peripheral rods but since it was found that large deviations in
enrichment increased the errors of the linearization model the reference was instead
calculated to be as close as possible to the desired enrichment. For the short-cycle
reactor this was done by simply taking the design from the manual design in Figure
5.14, replacing its BA rods with pure uranium and adjusting the layout so that all
interior rod positions had the same enrichment and total bundle average enrichment
was preserved. This design shown in Figure 5.15 was then perturbed with Gd in
concentrations of 2, 3, 4 and 6 % in every permitted position. This amounted to
116 designs per bundle segment.

The procedure was identical for the long-cycle reactor although the reference
design was instead Figure 5.16 and Gd perturbation concentrations were 4, 6 and 8
%.
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Figure 5.14: The manually optimized design for the short-cycle reactor, bottom
segment. Numbers represent enrichment levels, white boxes are ordinary uranium
rods and blue boxes are BA rods with 3.2 % enrichment and 3 % Gd.

2.00 2.00 3.40 3.40 2.80 2.80 3.40 3.40 2.80 2.00

2.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 2.80

3.40 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 3.40

3.40 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 3.40

2.80 4.00 4.00 4.00 4.00 4.00 4.00 2.80

2.80 4.00 4.00 4.00 4.00 4.00 4.00 2.80

3.40 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 3.40

3.40 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 3.40

2.80 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 2.80

2.00 2.80 3.40 3.40 2.80 2.80 3.40 3.40 2.80 2.00

Figure 5.15: Gd-free reference design for 1st step of optimization of the short-cycle
reactor, bottom segment. Average enrichment in the bundle segment is 3.63 %
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Figure 5.16: The manually optimized design for the long-cycle reactor, bottom seg-
ment. Numbers without percentages represent enrichments, colored boxes represent
BA rods with percentages stating Gd concentration.

The perturbations generated a set of step 1 S-matrices which were run in the
CPLEX optimization suite. The optimization was subject to numerous constraints
including those detailed in Table 3.1 and properties derived from the final designs,
namely the peak k∞ burnup, b and the BA effect on initial k∞, a. Table 5.5 shows
the details of the step 1 optimizations. The documentation for manual design of
the short cycle reactor stated that the design was optimized towards minimizing
Fint. Such a strategy can be implemented in the simplex optimizer but the resulting
designs proved very poor with regard to R and it proved more efficient to include
R in the optimization target than trying to constrain it under fixed values, a large
improvement in R-factor was then obtained from a much smaller sacrifice in Fint.

For the short-cycle reactor a CPLEX approximated R-factor along with its real
DOFACT value can be seen in Figure 5.17, the CPLEX approximation shown in
red is the curve approximated by CPLEX for its winning design. An evaluation of
this suggested design shows that its real R-factor is actually lower than the CPLEX
approximation through the majority of the cycle.

That the CPLEX approximation in Figure 5.17 for R overshoots the real value
can be explained by the errors observed from the faulty but necessary simplification
of the minimum function SJ and SK in the R approximation.

5.3.2 Uranium enrichment and Gd concentration optimiza-
tion

The BA placements from step 1 were taken as references for a step 2 optimization
where BA positions were fixed and perturbations ran for every position in the grid.
Uranium perturbations were done at 2.4 and 4.95 % 235U in all positions and Gd
perturbations in nodes containing BA. Gd perturbations were done at slightly dif-
ferent percentages to account for the differences between 12 and 24 month cycles:
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Step 1 Procedure Short Cycle Reactor Long Cycle Reactor
Calculation time for S-
matrices

15 minutes 15 minutes

CPLEX target function Sum of max R and Fint
from 10 GWd/tU on-
wards

R factor late in cycle

Notable constraints LHGR, k∞ profile LHGR, k∞ profile, types
of Gd rods

CPLEX optimization
time

8 min 25 s 2 min 12 s

Value of CPLEX target R=0.91651, Fint = 1.141 R = 0.921033
Concentrations used (%) 3 6 & 8
Number of BA rods 10 17

Table 5.5: Results of Step 1 Optimization
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Figure 5.17: R-factor for the step1 optimization of the short-cycle reactor. Red =
CPLEX, Green = DOFACT.
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the first using 2 and 4 % (3 % rods were selected by step 1) and the second using
4 and 8 %. The conditions and constraints on the optimization from step 1 were
slightly altered to include average enrichment constraints and the different methods
for calculating BA effect on initial k∞ (a11) and burnup at peak k∞ (b) burnup. A
total of 336 (short-cycle reactor) and 352 (long-cycle reactor) PHOENIX jobs were
submitted and S-matrices extracted.

Step 2 Procedure Short Cycle Reactor Long Cycle Reactor

Calculation time for S-
matrices

1̃0 min 1̃0 min

CPLEX target function Sum of max R and Fint
from 10 GWd/tU on-
wards.

R factor late in cycle,
around peak k∞.

Notable constraints LHGR, bundle enrich-
ment,

LHGR, bundle enrich-
ment,

CPLEX optimization
time

4 h 12 min 15 min

Value of target Fint=1.113, Rmax=0.928 0.9104

Enrichments used 2.4, 2.8, 3.2, 3.8, 4.0, 4.4 3.2, 4.0, 4.4, 4.6, 4.95

BA concentrations used 2 % 5, 7 %

Table 5.6: Results of Step 2 Optimization

5.3.3 Performance compared to manual designs

Short cycle reactor

The optimization for the short cycle reactor was targeted at the sum of R and Fint

since it had been found that the optimizer could yield a large gain in one parameter
at a small sacrifice in the other. Although the optimization target in the automatic
and manual processes were not the same it became clear that the compound objective
led to a good balance between the parameters with improved Fint compared to the
manual optimization.

The reason for not minimizing the maximum values over the entire cycle is
that the severity of poor R and internal form factors depends on the power of
the bundle: R-factor couples CPR sensitivity to bundle power and Fint is a relative
power measure. The values of these parameters are therefore most important when
bundle power is high, which in turn is determined by the peak k∞ burnup value from
k∞ optimization. It is also useful that narrowing the burnup interval over which
optimization is done decreases the number of points CPLEX needs to evaluate and
therefore the run-time.

11The step 1 optimization uses fixed enrichments and has no BA in the reference. In that case
the a-value is simply the initial k∞ of the reference minus that of a considered design. When
enrichments change together with BA in step 2 the value can not be computed in the same manner
since the BA-free k∞ changes too.
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Figure 5.18: Automatically optimized design for the short-cycle reactor.

The short cycle reactor was found to perform well against the manually optimized
reference design on several criteria, the internal form factor in Figure 5.20 was kept
lower during peak k∞ by sacrificing some initial and final margin. For the bottom
slice studied the bottom slice internal form factor at 0 burnup increased from 1.106
to 1.186, at peak k∞ decreased from 1.11 to 1.079 and at 40 GWd/tU it increased
from 1.046 to 1.055.

The R-factor was included in the optimization and this made a mark since it
managed to perform better than the manual design throughout the cycle, see Figure
5.21.
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Figure 5.19: Automatically optimized design for the long-cycle reactor.
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Figure 5.21: Short-cycle reactor maximum R-factor, red = manual design, green =
automatic design.

The k∞ profile was a bit off from the desired peak k∞ burnup as seen in Figure
5.22, this proved to be the result of a combination of lax CPLEX constraints and
linearization inaccuracy. The sought profile of the manual optimization peaked
at 7 GWd/tU whereas the simplex approximation was calculated to do so at 6.5
GWd/tU12, the real value for this peak however turned out to be 6.0 GWd/tU after
design was evaluated in the 2D lattice code.

12A tolerance of 0.5 GWd/tU above or below the sought value was used, this can be omitted
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Figure 5.20: Short-cycle reactor bottom slice maximum relative pin power, red =
manual design, green = automatic design.

0 10 20 30 40 50 60
0.7

0.8

0.9

1

1.1

1.2

Burnup (GWd/tU)

k
∞

k
∞

, bot=blue mid=red top=green, crossed = manual design, solid = automatic

Figure 5.22: Short-cycle reactor k∞ profiles for all slices, reference = crosses, CPLEX
= solid.
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Long cycle reactor

For the long-cycle reactor the optimizer had a harder task complying with the con-
straints. This manual optimization was well-done and small inaccuracies propagated
in the model to impair the results of the automatic optimization. Figure 5.23 shows
that the optimized design ”wins” in the target interval around 20 GWd/tU, where
the R-factor decreases from 0.922 to 0.912; but performs worse in other parts of the
cycle, for instance at 0 burnup where it increases from 1.020 to 1.053.
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Figure 5.23: Long-cycle reactor maximum R-factor, red = manual design, green =
automatic design.

Figure 5.24 demonstrates clearer how the gain in R-performance has come at a
large sacrifice in pin power distribution, which is much more unequal than in the
manual case: initial Fint increases from 1.354 to 1.617 and Fint at peak k∞ from
1.118 to 1.147.
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Figure 5.24: Long-cycle reactor internal form factor from an optimization targeting
only Rmax, red = manual design, green = automatic design.

The result of this optimization showed the importance of balanced constraints,
as the maximum relative pin power in Figure 5.24 is quite unacceptable. Attempting
to correct the pay-off between Fint and R another optimization was therefore run,
targeting the sum of R in the target interval and Fint (just as in the short-cycle re-
actor optimizations) over a larger burnup interval, with the R contribution targeted
twice as heavy as Fint part by defining the target variable t as t = Fint

2
+R.
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Figure 5.25: Long-cycle reactor maximum R-factor from an optimization with a
compound optimization target, red = manual design, green = automatic design.

The results of this alternative strategy can be seen in figures 5.25 and 5.26. It is
clear that no gain in one parameter came without sacrificing the other but it shows
to the feasibility of using weighted sums of parameters as optimization targets13.
The role and potential benefits of unconventional compound objectives is discussed
in Section 6.1.4.

13If there is time; a greater number of parameters evaluated increases the run-time significantly,
especially if they have to be evaluated over longer burnup intervals.
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Figure 5.26: Long-cycle reactor internal form factor from an optimization with a
compound optimization target, red = manual design, green = automatic design.

For the long-cycle reactor neither the optimization targeting only R nor the one
using a compound R and Fint target could generate any overall improvements to
the manual design in the manner that the short cycle reactor optimization could (at
least on a first glance).

Time savings

It should be noted that the manual design in the long-cycle reactor case did indeed
require significant design time and represents exactly the kind of case an optimiza-
tion program is requested for. Actually quantifying the time taken to design a fuel
bundle is hard since the process is intertwined with the general fuel bid process but
estimates on tough cases range as high as one engineering-week.
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Discussion

6.1 Simplex framework

6.1.1 Benefits of simplex fuel bundle optimization

In the results section a great number of obstacles hindering ideal implementation of
a bundle optimization program have been presented and focus has been put on the
errors prevalent in the approximations and how to reduce them. A conclusion that
has been drawn is that a linear perturbation optimization scheme such as the one
examined will be sensitive if it incurs large changes in the design variables (compared
to the reference used as input). The investigations of the optimization scheme have
shown that these errors are hard to combat and that the optimizations may suffer
from them in an unpredictable manner, sometimes more and sometimes less. The
relative strength of the optimization program has not however been found to vary
between reactors in any significant way, that is, longer cycles are harder to optimize
both manually and automatically.

There are of course great potential benefits to be reaped from automatically
optimizing bundle designs functionally: better designs can be found with less time
being spent on trial-and-error during the bundle design process (a cost estimate for
this is found in Section 6.1.4). It should be noted that automatic optimizations
requiring a lot of computing time can be beneficial even for nuclear designs where
a skilled engineer could have found an equivalent design in a shorter time; the key
is that the program decreases the total amount of time spent by the engineer on
the bundle design. This requires a good user interface and integration as well as
run-times that are compatible with normal work: i.e. absolutely nothing longer than
overnight optimizations. The prototype optimizer studied and developed on is not
however at such a stage yet, especially regarding user interface.

Simplex optimization has a beneficial side effect besides actual optimization in
that it can determine limits of possible solutions. If a set of parameters, such as
limits on internal power peaking factor and number of BA rods, are not compatible
the optimization program will in very short time realize it is infeasible and cancel
optimization. This feature is not possible in stochastic optimization and it can help
the nuclear designer when balancing constraints for bundles to use in a whole core
optimization.

An optimization of specific concern to the nuclear company was the idea of
optimizing the BA layout to minimize the total number of Gd rods in a bundle
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to improve production, logistics and customs expenses. This optimization was at-
tempted by taking a manual design, removing Gd and running a step-1 optimization
on the problem. This approach did however not yield any conclusive results due to
the strict constraints used, lack of time and that a good implementation of this
would require combination of step 1 and 21.

6.1.2 Simplex method improvements

Several strategies were concocted to improve the simplex framework available at the
beginning of the project. Most of these were investigated in the results section but
others were not possible to implement in the scope of this project.

k∞

Several improvements were attempted for k∞. The symmetric perturbations that
were implemented proved superior to asymmetric perturbations for the second step
of optimization. Using reference cases with carefully adjusted average enrichment
proved useful for the optimization. In the second step it was seen that large changes
in BA concentration affected the optimization accuracy negatively; that the first
step with a correct enrichment profile could better pick BA concentrations which
the second step did not have to change could therefore improve the accuracy of the
second step and thus the quality of the optimization.

These improvements were implemented into the optimization framework along
with more accurate optimization constraints on k∞.

Piecewise linearly constrained variables were interesting to use but made the
optimizations too slow to function. A better implementation of these constraints
or any other part of the simplex implementation (if it increases the speed of the
process) could make these a viable option for improved accuracy.

A shadow-factor was not implemented in the second optimization step since it
was expected it would also slow down the process further still. A major concern
for step-2 optimizations is however that the k∞ profile tends to become shifted
horizontally from its real value (creating a faulty estimation of b-value). This is
thought to be due to an inability to factor in the group effects of several interacting
changes in BA concentration; so a shadow factor accounting for this could be a way
to improve the estimation.

The approximation of k∞ curves is still inaccurate when BA-concentration changes
by large amounts, increasing the concentration in many rods will in PHOENIX cal-
culations shift the peak burnup (b-value) to higher values but the sum of several
S-matrix elements will not reproduce this effect. A possible explanation is that the
extra gadolinium introduced with one perturbation will be quickly burnt out when
all other rods have lower concentrations and the resulting perturbation elements will
diminish quickly beyond the reference design b-value, this does not happen when
several rods change together and the result will be that the linear approximation
puts the peak at a too low burnup. This situation will reverse if an aggregate BA
decrease is introduced by the optimization.

1One would like to run a BA-placement optimization on many enrichment profiles to find a
minimum number of BA rods.
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Relative pin power distribution

The accuracy of relative pin power approximation was found to behave in a similar
manner as that of k∞ approximation. BA changes typically induced greater errors
than enrichment changes, especially when these were clustered. Figure 6.1 shows
the burnup evolution of pin power errors, it is found that these diminish strongly
as BA becomes burnt out. Due to the matrix nature of pin powers it was harder to
visualize the accuracy and implement alternative formulations in CPLEX; thus the
behavior of relative pin powers was not as rigorously studied as that of k∞.

R-factor

The impact of the previously unknown linearization errors of the minimum-functions
in the equations for R have been shown in Section 5.2.3. Allowing this minimum
value to be explicitly calculated in the simplex optimization proved infeasible as it
greatly increased the optimization time.

Pin power target instead of R-factor approximation The comparison to the
design obtained by R approximation shows that the pin power deviation minimiza-
tion can indeed generate a superior design but at a high cost in calculation time.
The reason for this has not been firmly established but the most reasonable idea is
that the optimizer when optimizing an approximation of R can omit more variables
as it identifies the limiting rod at a burnup time, the same not being possible for
the pin power distribution target. It is also striking how summing the deviations
from different axial slices drastically increases the calculation time.

Adjusting the target power distribution to account for another constraint on peak
rod power did not improve results. This should be expected since the change in the
optimum power profile resulting from the LHGR constraint is marginally different
in positions other than the limited rods; all the non-limited positions simply shift
slightly to higher powers and the gains from recalculating are slim (the optimization
only targets relative pin power values higher than the optimal distribution).

Although the pin power distribution target relieves the problem of the minimum-
value simplification used in the R-approximation it is not without inaccuracies:
the analysis of power-distribution errors in Section 5.2.2 showed that these were
reasonably small in the optimizations studied. The calculation of deviations from
an optimum does however place a much greater demand on accuracy in every rod
than a simple limitation on Fint; which is the normal case of pin power relevance.
The R-factor optimization is also specifically targeted at the peak k∞ burnup (since
this is where the R-factor is most important) where the errors in approximation tend
to be the greatest. Figure 6.1 shows the maximum pin power errors approximated
by CPLEX in the step 2 optimization leading to the first value in Table 5.2.3:
average enrichments have changed by less than a 0.02 of a percentage in all three
axial slices and about half BA positions increased from 6 to 7 % with the other
half decreasing from 6 to 5 % so the optimization step has not incurred any large
changes in composition. This only emphasizes the need for a deviation optimizer
to post-process multiple solutions with low deviations to find the best R-factor as
such an optimization will have uncertainties both in how great the deviation from
optimum is and what R-factor this deviation corresponds to.
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Figure 6.1: Maximum pin power errors in CPLEX approximation. Blue = bottom,
red = middle, green = top.

6.1.3 Feasibility and performance of optimization

The optimizations on real fuel bids show that while it is feasible to use a simplex
method to optimize fuel bundle designs it is hard to naively use an automatic tool
and expect to ”beat” years of experience in fuel design. It is evident however,
that such a tool can generate good designs if the problem is approached with some
experience and caution for error in approximations. It also shows that weighing
optimization parameters such as different target functions against each other2 and
adjusting constraints affect the quality of the solution, thus in no way decreasing
the need for nuclear design expertise.

Impact of poor approximations

It seems obvious that if the objective of an optimization is to minimize the form
factor and the approximation of this property being used by the optimization engine
is faulty; then the optimized design will also be faulty. However if the error imposed
by the linearization is virtually consistent for all reasonable designs then this error
might not limit the optimization tool. After all the goal of the program is to find

2The compound objective used in the optimizations on both the long-cycle and short-cycle
reactors were useful in this benchmark as the concern was merely to generate a design that was
as ”good as possible” from several perspectives. The documentation from the manual designs did
not state exactly what constraints had been used in the design, and using the entire Fint-curve
of a manual design as a constraint gives an unfair advantage to the manual designs since most
improvements most come at a (small or large) price in some other parameter or burnup point.
When one has hard constraints on parameters, for example a Fint-curve, it is logical to optimize
a single variable, usually R, and the constrained variable will most likely border its constraint at
exactly one point. Thus a compound objective might be better in these kinds of benchmarks than
in reality, where constraints are hard and ”only” have to be met.
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which is the best design; its actual exact properties can be quickly and accurately
obtained by 2D lattice code calculations.

Examples of errors affecting optimizations 1. The results in Table 5.2.3
suggest that different errors in power approximation might have affected the values
of R, it is unreasonable that a non-corrected deviation should perform better than
one corrected for axial weighting factor. 2. After analyzing the results of the long
cycle reactor optimization it was found that the Excel file entries for the reference
enrichments in 4 of 96 positions had not been entered correctly. This mishap should
be expected to have hampered the performance of the optimization since it led
CPLEX to calculate differences starting from incorrect assumptions. This might
have contributed slightly to the significantly less impressive results generated in this
optimization, the difference has however not been computed. These errors were
easily created when using the prototype framework since there were many manual
steps and no safeguards or reminders for mistakes.

6.1.4 Recommendations and usage guidelines

Some lessons learned through this thesis will be important to keep in mind for further
development of simplex fuel bundle optimization:

• The user can make the optimization much stronger by providing good con-
straints and reference designs. These could partially be computer-generated,
to account for average enrichment.

• Automating the comparisons of real bundle parameters from the 2D lattice
code to the linear approximations used in the simplex program can yield much
better and more thorough understanding of what makes the optimizations
work and what doesn’t. This was a step that should have been taken early in
this project but wasn’t due to lack of programming expertize.

• Keeping the errors from above comparisons visible so that all optimizations
can be gauged on their accuracy is important. Including a plugin for external
R-calculations would also be necessary since these aren’t done by the 2D lattice
code.

• The time that can be saved with an optimization program is a very important
parameter that hasn’t been accurately estimated during this project, a good
measure of this is essential for decision-making.

During the project a consultant has been working in parallel to create a pro-
duction version of the optimization program with a new model running on a cluster
with significantly faster and more stable S-matrix generation and data-handling.
This program could improve the prospects for automatic optimization greatly and
potentially include some more accurate models. The problems encountered with the
R-factor model are important to keep in mind and continued investigation of im-
plicit R-calculation from pin power distribution, by someone with good optimization
knowledge, could be a way forward. This would also future-proof the optimization
for fuel types that do not use XL-correlations and thus have significantly different
R-factor equations.
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Cost-benefit analysis

To sum up the recommendations for the optimization project a crude cost-benefit
analysis is useful, the payback time for a project like this is hard to estimate and will
partly depend on whether the optimized fuel bundles will be surpass and be more
desirable than manual designs. In this project the manual designs were however not
surpassed in quality, but it seems viable that an optimizer could eventually design
equivalent fuel.

For equivalent fuel a rough calculation of payback time for the nuclear company
can be made with the following assumptions:

• It will take one engineering year to develop an optimizer from idea to pro-
duction and support it over its lifetime. Cost of additional software, such
as commercial simplex optimizer license, costs an equivalent 50 engineering
hours.

• Fuel bundle nuclear design generally takes between 4 and 40 hours [24], so a
design time of 10 hours for 12-month and 25 hours for 24-month cycle reactors
is assumed.

• A good optimization program can cut the fuel bundle nuclear design time by
three-quarters.

• There are 84 BWRs worldwide [16], assumed to be evenly divided between 12
and 24 month cycle operation3.

• The BWR fuel market share of the company is 30%.

• Long-term internal rate of return for large nuclear companies is 5 %[27].

The payback time from time savings alone would then be 15 years. Uncertain-
ties are many, such as interest rates and the future size of the BWR market, but
the most important ones are the actual time that will be saved in design and time
needed to develop and maintain the program. The profitability of automatic opti-
mization will however not only come from time savings and market share (through
superior designs) but will depend on how its positive effects are measured. Posi-
tive externalities from automatic optimization could include better integration with
loading pattern optimization, reduced number of Gd concentrations or enrichments
and potentially better customer satisfaction from quicker design processes.

6.2 Project evaluation

6.2.1 Goal attainment

The overall goals of the project were: investigating optimizations on nuclear fuel
bundles, coming up with and evaluating possible improvements to simplex optimiza-
tion code and determining the usefulness and benefits of automatic optimization on
nuclear fuel bundle designs. These main tasks have all been thoroughly labored and

3If 24-month cycle optimization is assumed to exactly twice as hard as 12-month, the relative
abundance of reactor cycle lengths does not matter.
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although many results were either expected or erratic there were several notable find-
ings that put the light on some unknown difficulties and can enable improvement
of the framework. Although the project as a whole has not generated any dramatic
breakthroughs in BWR bundle optimization it has been shown that an optimization
scheme based on linear perturbations can generate useful fuel assembly designs when
the user is aware of the limits introduced by linearization.

6.2.2 Method used

The method used in the project, of focusing strongly on improvements and error
patterns in the optimization framework, was a product of the nature of both the
project and the equipment used. The fundamentals of the optimization framework
were already in place but poor organization of it (see Figure 6.2) meant that it
was very hard to work with. The focus on sources of various errors was therefore
necessary to being able to evaluate automatic optimization’s performance against
manual designs. Furthermore the equipment available proved to be a major challenge
since licensing issues limited the use of the CPLEX optimizer to a very old version
running on a very old computer. This meant that around half the project was spent
not able to do full-cycle optimizations since the calculation time became far too long.
After a long wait a new computer with CPLEX was introduced and the optimizations
duly became up to 300 times faster as explained in Chapter 4.2.3. A smaller focus on
improving optimizer performance could have enabled other questions to have been
investigated and thus a more interesting paper.

6.2.3 Areas for further investigation

The project has borne several ideas that have not been possible to try out but could
very well be interesting topics of related research.

Stochastic optimization

In Section 1.3.2 a brief explanation of stochastic optimization algorithms was given,
it was also argued that these schemes such as these are hampered by the inability
to estimate if a set of constraints is at all possible to fulfil, or to provide any clue
whether the optimization will run for X seconds or Y hours.

A more thorough investigation including an actual implementation on this prob-
lem would however be greatly beneficial to understanding the problem and finding
the optimal optimization strategy for BWR bundle designs. The problems surround-
ing linearizations of the bundle parameters in Section 5.2 show that there could be
a real benefit in calculating bundle parameters such as R and k∞ with 2D lattice
codes for every evaluation instead of relying on linearizations. A stochastic approach
would also require a skilled developer to create a good initial population of bundles,
as only a minuscule proportion of random designs would meet constraints on param-
eters such as k∞. Although a stochastic scheme could work without any ”smart”
reference input it might require a very long calculation time to find ”the right track”
since evaluating a design takes around 10 seconds in one processor core.
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Figure 6.2: A representation of the state of the S-matrix generation for the opti-
mization framework at the beginning of the project. Process was done three times
for the different components of optimization. Names of modules are not important
but the number of these and their interconnectivity posed a problem during the
project, stick men represent instances of user intervention. [24]
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Loading-pattern optimization

Integration into automatic whole core loading-pattern (LP) optimization is currently
infeasible, but coupling synergies exist. As was mentioned in the introduction,
nuclear fuel optimization most often constitutes two separate steps: fuel bundle
design and core loading pattern, of which only the first is addressed in this project.
There are several reasons for the separation of tasks: The problem of deciding which
rod to use at every lattice position in every bundle in a reactor, laterally and axially,
is very, very large. The program used to generate perturbation matrices addresses
only 2-D single-bundle physics. A completely different interface would be required
to generate perturbations on core-level. An interesting topic for research would
be to start from a whole core loading pattern problem and use an optimization to
provide constraints on the fresh bundles that should be entered. From there another
optimization stage could create those bundles and maximize a whole-core parameter,
such as CPR.

6.3 Project conclusion

The project has provided an interesting insight into nuclear power and optimization.
The nature of the work has meant that the optimization and programming aspects
of the problem have constituted the majority of the work with the nuclear physics
mainly providing the backdrop. A clearer plan at the onset of the project and greater
awareness and criticism before starting it could have enabled more original work to
be done and clearer conclusions to be drawn.
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Appendix A

Additional Data

Perturbation case without nearby BA No BA in rod (2,2) S-matrix, no BA
∆k∞ , enrichment change, rod (2,2) 1.37533→ 1.37682 0.00149
∆P , enrichment change, rod (2,2) 0.750→ 1.254 0.504
∆k∞ , enrichment change, rod (2,3) 1.37372→ 1.37647 0.00275
∆P , enrichment change, rod (2,3) 0.709→ 1.165 0.456

Perturbation case with nearby BA 6 % BA in rod (2,2) S-matrix, 6 % BA
∆k∞ , enrichment change, rod (2,2) 1.33940→ 1.34032 0.00092
∆P , enrichment change, rod (2,2) 0.268→ 0.403 0.135
∆k∞ , enrichment change, rod (2,3) 1.33714→ 1.34102 0.00388
∆P , enrichment change, rod (2,3) 0.613→ 1.005 0.392

Table A.1: Effects on S-matrix elements from introducing BA. The differences in the
third column values show the impact of BA addition on k∞ and P in neighboring
rods. This impact on S-matrices justify the two-step approach taken, where BA is
first added and new S-matrices calculated with Gd concentration fixed.
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Figure A.1: Short-cycle reactor middle slice maximum relative pin power, red =
manual design, green = automatic design. In the middle slice the automatic op-
timization performs better than the manual design throughout most of the cycle,
better than bottom slice comparison shown in Figure 5.20.
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Figure A.2: Short-cycle reactor top slice maximum relative pin power, red = manual
design, green = automatic design. In the middle slice the automatic optimization
performs worse than the manual design throughout most of the cycle, especially
early in the cycle. The manual design however had excess margin so together with
Figures 5.20 and A.1 this shows that gains in automatic optimization performance
can come from better using all available margins to improve performance in the
”worst” rod segment.

Bottom Slice, 0 GWd/tU
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Figure A.3: Pin power relative errors, Figure 5.7 corrected for power in rods, after
a step-2 optimization. All errors are below 2 %.
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Bottom Slice, 0 GWd/tU
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Bottom Slice, 18 GWd/tU
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Figure A.4: Errors in pin powers from CPLEX approximation in step 2, by far
the largest errors are found in the corner rods early in the cycle. For fuel bundle
optimization accuracy this is good, since the most critical part of the cycle is when
peak k∞ is reached, for this bundle at a burnup of 18 GWd/tU.
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