Neutron Fundamentals 2017

Goal:

To investigate the workings of various neutron detectors.

Method:

Groups of 2 will research one particular type of neutron detector and prepare a short report (maximum 10 pages including figures, URKUND!) and a short presentation (10 minutes + 5 for questions) presenting a concise overview of the detector they have chosen.

Timeline:

- 2017-01-30: This presentation.
- 2017-01-30: Choice of groups and choice of neutron detector or source to be completed and details emailed to kevin.fissum@nuclear.lu.se by 23:59.
- 2017-02-09: Presentations 10:00 in B113.
- 2017-02-17: Reports by 23:59. Submit as .pdf as above.

Possible Project Topics (not exhaustive):

Detector type	neutrons	type
B-based	meV	reaction
³ He-based/ ⁴ He-based	meV/MeV	reaction
⁶ Li-based	meV	reaction
Fission-based	meV	reaction
scintillator-based	MeV	scattering
dosimeters	all	
hybrid	all	
other (check first)		

Report Guidelines:

Pay particular attention to the following (if applicable):

- 1. Historical overview
- 2. Underlying physical concepts / working principles
- 3. Practical details and applications / uses
- 4. Operational details and advantages / disadvantages
- 5. Additional comments