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Preface

This licentiate thesis is the result of two years of work as a PhD student in the nuclear struc-
ture group at the department of Physics at Lund University. It contains the result of the anal-
ysis of three experiments carried out at the REX-ISOLDE facility at CERN. The purpose of
the experiments was to extract the reduced transition probability, the so called B(E2) value
between the first excited 2+ state and 0+ ground state in the neutron deficient Sn isotopes,
106,108,110Sn. The experiments were only possible due to recent technological advances in the
production of post-accelerated Radioactive Ion Beams with adequate intensity. The B(E2)
value provide information about the wave functions of the states involved in the transition,
such as the collectivity of the excited state.

I have previously presented parts of the results at the following occasions:

• Svenskt Kärnfysikermöte XXV, Umeå, Sweden, November, 2005.

• IX International Conference on Nucleus Nucleus Collisions, Rio de Janeiro, Brazil,
September, 2006.

• FINUSTAR 2, Aghios Nikolaos, Crete, Greece, September, 2007.

• Svenskt Kärnfysikermöte XXVII, Gothenburg, Sweden, November, 2007.

Lund, December 5, 2007
Andreas Ekström
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Chapter 1

Introduction

This work is focused on the experimental measurements of the transition probability be-
tween the first excited 2+ state and the 0+ ground state, the so-called B(E2) value, in the
β-unstable neutron-deficient 106,108,110Sn isotopes. The B(E2) value gives information on
the degree of quadrupole collectivity versus the single-particle nature of the excited state.
The B(E2) values for the heavier even-mass Sn isotopes and a theoretical prediction are dis-
played in Fig. 1.1. The experimentally observed shift at 114Sn towards a larger B(E2) value
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Figure 1.1: B(E2) values for the even-mass Sn isotopes with A > 110. The
theoretical prediction is a shell-model calculation [1] with an effective interaction
based on the CD-Bonn nucleon-nucleon interaction. For A < 116 a shift towards
higher B(E2) values is observed.

deviates from the theoretical prediction. It is of great interest in nuclear structure physics to
investigate theB(E2) values in the lighter Sn isotopes. This has been made possible through
the recent advent of post-accelerated radioactive ion beams.

Atomic nuclei with proton and neutron numbers 2,8,20,28,50,82 and 126 are energetically
more bound than their neighbors on the nuclear chart. These so-called magic numbers are
the corner stones of modern nuclear theory. They indicate that the atomic nucleus has a shell
structure conceptually similar to the one seen in the electron structure of the atom. Due to
this, the Sn isotopes, which have 50 protons, comprise the the longest isotopic chain in na-
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2 Introduction

ture. This makes them attractive for a systematic investigation. The structural changes of
the first excited state are mapped by measuring the B(E2) value towards the doubly-magic
100Sn nucleus. Furthermore, this will provide information on the strength of the shell-closure
at 100Sn. Moreover, when this is compared with the theoretical predictions, it can aid in pro-
viding insights on the underlying nucleon-nucleon interaction.

The thesis is divided into 6 chapters. The next chapter (Ch. 2) gives an introduction to the
theoretical concepts. Chapter 3 explains the experimental method. Chapter 4 gives the de-
tails regarding the analysis of the experimental data and the experimental results are sum-
marized in Ch. 5. The present status of the theoretical calculations is given in Ch. 6.



Chapter 2

Theoretical Aspects

The main theoretical ideas on which this thesis rests are summarized in this chapter. The
fundamental theoretical problems connected with present-day nucleon-nucleon interactions
in finite nuclei are discussed. The last section briefly treats the well-established theory of
Coulomb excitation.

2.1 The Nucleon-Nucleon Interaction

The atomic nucleus is a quantal many-body system consisting of N neutrons and Z protons
which in total amounts toA = N+Z nucleons. A nucleon in turn is built of three quarks that
interact via the strong force mediated by gluons. Quantum chromodynamics (QCD) is the
theoretical framework of how quarks and gluons interact with each other and themselves. It
is with presently available techniques not possible to derive the free nucleon-nucleon inter-
action, VNN , from fundamental QCD principles. However, progress has been made recently
within the lattice-QCD approach [2].

The interaction between two nucleons in free space is not the same as their interaction in
the nuclear medium. The nuclear medium can be finite (e.g. atomic nuclei) or infinite (e.g.
neutron stars). The interaction of interest here is the one within the atomic nucleus. Modern
theories describing the nucleon-nucleon interaction make use of the effective field theory
(EFT) concept [3]. In this framework only the low-energy degrees of freedom are taken
into account. Low is defined with respect to the chiral symmetry breaking scale Λ ≈ 1 GeV.
The only participating particles in this model are the nucleons and the lightest meson, the
pion. Steven Weinberg showed [4] that it is possible to construct a systematic expansion, a so
called chiral perturbation, of VNN in terms of (Q/Λ)ν , whereQ is the pion momentum trans-
fer and ν = 1, 2, 3, . . .. The underlying nucleon-nucleon Lagrangian incorporates all known
symmetries of the QCD Lagrangian, in particular spontaneously broken chiral symmetry [5],
which is crucial for an accurate description of nuclei. For the chiral expansion to converge,Q
must be smaller than Λ. The number of terms in the expansion to order ν is finite. Presently,
ν = 4 is the highest order chiral EFT nucleon-nucleon Lagrangian constructed, leading to
the N3LO nucleon-nucleon interaction [6, 7]. Three-body interactions are present at order
ν ≥ 4, however, not included in the present N3LO interaction. The N3LO interaction con-
tainsNpar = 29 parameters [6]. They are fitted to reproduce experimental scattering data. At
ν = 4 the χ2/Npar of the fit to neutron-proton scattering data is 1.1. The χ2/Npar for NNLO
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4 Theoretical Aspects

(ν = 3) and NLO (ν = 2) are 10.1 and 36.2 [8], respectively, indicating a rapid convergence
with increasing ν.

There exist other types of free nucleon-nucleon interactions with just as good parameter
fits to the experimental data. For instance one boson exchange potentials (OBE) [9], where
the latest one is called the CD-Bonn interaction [10]. Reference [11] and references therein
give an exposé of various nucleon-nucleon interactions. However, there are two arguments
that make chiral EFT models appealing. First of all, it stems from underlying QCD making
it the most fundamental approach as of today, and secondly, many-body interactions come
out systematically with increasing chiral order ν.

The experimental input to the parameter fit of the EFT nucleon Lagrangian or any phe-
nomenological Lagrangian come from phase shifts δ 1 in np and pp scattering experiments.
The phase shifts are related to the underlying scattering interaction V through the R-matrix [12],
which in the center of mass system can be expressed with the integral equation [13]

R(q′, q, E) = V (q′, q) + P
∫ ∞

0
k2dkV (q′, k)

1
E − k2/M

R(k, q;E) (2.1)

The R−matrix also depends on the total angular momentum, spin, and isospin. The energy
of the interacting nucleons of mass M is denoted by E and the relative momenta is given
by q, q′, k. In particular, k is the intermediate momenta during the interaction process. The
experimental phase shifts are related to the diagonal R−matrix elements when q′ = q = q0

R(q0, q0) = −tan δ
mq0

, E =
q20
M

(2.2)

The non-diagonal R−matrix elements are not constrained by experimental data. All nucleon-
nucleon potentials will produce the same diagonal R-matrix elements. The non-diagonal
part is model dependent. Currently, the world scattering data base on np and pp scattering
data contain phase shifts up to and including the angular momentum ` = 6 partial wave be-
low 300 Mev in the laboratory frame of reference. The typical shape of the nucleon-nucleon
interaction VNN as a function of inter-nucleon separation is plotted in fig. 2.1. Due to the
repulsive core of VNN the interaction matrix elements become very large or even infinite.
This poses several mathematical problems.

2.2 Effective Interactions

It is impossible to solve the many-body Schrödinger equation analytically. One must resort
to perturbation theory. However, due to the large interaction matrix elements, a perturbative
scheme is not applicable without some mathematical treatment. A second issue to resolve
is the large dimensionality of the interaction matrix of a nucleus with 100 nucleons. The
present-day computational limit is at a dimension of ∼ 109 basis states. The strongly repul-
sive core of the nucleon-nucleon interaction can be renormalized using G-matrix theory (see
Sec. 2.2.2). The large space is truncated and the effects of the excluded space are included
approximatively using many-body perturbation theory (see next section).

1δ > 0 attractive potential, δ < 0 repulsive potential
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Figure 2.1: The nucleon-nucleon interaction in the 1S0 channel as a function of
the inter-nucleon distance in fm. Below 1 fm the interaction becomes strongly
repulsive. The attractive long range part of the nuclear force is mediated by the
lightest meson π, while, in OBE models, heavier mesons are responsible for the
short range and more strongly attractive parts. In EFT models only π enters the
equation.

2.2.1 Many-Body Perturbation Theory

The full Schrödinger equation of A interacting nucleons is given in Eq. 2.3. The energy E is
obtained by acting on the system |Ψ〉 with the Hamiltonian H .

H|Ψ〉 = E|Ψ〉 (2.3)

The Hamiltonian can be divided into two parts

H = H0 + V =

{
A∑
i

(ti + ui)

}
+


A∑

i<j

vij −
A∑
i

ui

 (2.4)

where ti is the kinetic energy operator of nucleon i and ui is a one-body potential for nucleon
i. The interaction between nucleon i and j is given by vij , the nucleon-nucleon interaction.
The second term in Eq. 2.4 is called the residual interaction and will be small if vij is finite
and approximately the same size as ui. It will be shown in the next section how the nucleon-
nucleon interaction VNN is renormalized using G-matrix theory in order to make it suitable
for the perturbative treatment described above. For now the residual interaction is treated
as small enough to be considered as a perturbation to H0.

For the harmonic oscillator potential, the one-body Schrödinger equations

(ti + ui)|φν〉 = eν |φν〉 (2.5)
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are possible to solve analytically. A state of the unperturbed A-particle system with orbits
α to η filled can be written in Slater determinant form, which in the second quantization
formalism reads

|Φi〉 =

(
η∏

ν=α

a†ν

)
|〉 (2.6)

The total energy of the (non-interacting) system in state i is obtained from

H0|Φi〉 = εi|Φi〉 (2.7)

where

εi =
η∑

ν=α

eν (2.8)

The unperturbed (or uncorrelated) states form a complete set, and the real nuclear wave
function |Ψ〉 can be expressed as

|Ψ〉 =
∑

i

ai|Φi〉 (2.9)

where the expansion coefficients, ai, are given by

aj =
〈Φj |V |Ψ〉
E − εj

(2.10)

The expansion coefficient are obtained using the original Schrödinger equation 2.3 and the
orthonormality of the unperturbed states |Φi〉. The Hilbert space spanned by |Φi〉 is infinite.
The size of the space for which the residual interaction should be diagonalized, is now trun-
cated and called the model space, or valence space, P . The excluded space, the complement
of P , is called Q. The two spaces can be defined through the projection operators

P =
D∑

i=1

|Φi〉〈Φi| (2.11)

and

Q =
∞∑

i=D+1

|Φi〉〈Φi| (2.12)

where the dimension of P is D. In order to do realistic calculations in the model space, the
interaction operating in P must approximately take into account the effects of the excluded
Q space. The true wave function |Ψ〉 can be split up into two parts

|Ψ〉 =
D∑

i=1

ai|Φi〉+
∞∑

i=D+1

ai|Φi〉 ≡ |ΨD〉+
∞∑

i=D+1

|Φi〉〈Φi|V |Ψ〉
E − εi

(2.13)

where the part of |Ψ〉 in the P−space is defined as |ΨD〉. Equation 2.13 can be written on
operator form

|Ψ〉 = |ΨD〉+
Q

E −H0
V |Ψ〉 (2.14)
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where |ΨD〉 = P |Ψ〉.

Introduce the wave operator (sometimes called the model operator) Ω, through

|Ψ〉 = Ω|ΨD〉 (2.15)

The wave operator transforms the model space states back into the corresponding exact
states, which is a non-trivial statement [14]. Write Eq. 2.14 in terms of the wave operator

Ω(E) = 1 +
Q

E −H0
V Ω(E) (2.16)

Assume that the wave operator has an inverse Ω−1 [14], and rewrite the full Schrödinger
equation, Eq. 2.3 as

Ω−1HΩΩ−1|Ψ〉 = EΩ−1|Ψ〉 ⇒ H|ΨD〉 = E|ΨD〉 (2.17)

where H = Ω−1HΩ is the transformed Hamiltonian. The transformation is a similarity
transformation, which does not change the eigenvalues. The projection operator (P + Q)
acts as the identity operator in the full Hilbert space of Slater determinants. The transformed
Hamiltonian can be written as

H = PHP + PHQ+QHP +QHQ (2.18)

Inserting this back into Eq. 2.17and using the projection operator properties ofQ and P gives

[PHP + PHQ+QHP +QHQ]P |Ψ〉 = EP |Ψ〉
[PHP +QHP ]P |Ψ〉 = EP |Ψ〉

Q[PHP +QHP ]P |Ψ〉 = EQP |Ψ〉
Q[QHP ]P |Ψ〉 = 0

QHP = 0

(2.19)

This so called decoupling relation states that the projected wave function P |Ψ〉 = |ΨD〉 is a
pure model space wave function. This implies that an effective model space Hamiltonian
can be defined

Heff = PHP = PΩ−1HΩP (2.20)

Following [15] the effective interaction can be defined as Veff(E) = V Ω(E), which with
Eq. 2.16 gives

Veff = V + V
Q

E −H0
V + V

Q

E −H0
V

Q

E −H0
V + . . . (2.21)

This operator equation contains the energy E of the full problem on the right hand side2.
It can be shown [14] that Eq. 2.21 can be transformed into terms containing only the unper-
turbed valence energy of the nucleons, Ev, and an unperturbed model space Hamiltonian
with the core energy removed, Hv = H0 −Ec. In other words, the total energy of the system
is given by

E = Ec + ∆Ec + Ev + ∆Ecv (2.22)
2The expansion is said to be of Brillouin-Wigner type.
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where Ec is the energy of the unperturbed core3, Ec + ∆Ec is the true energy of the core, Ev

is the unperturbed valence nucleon energy, and ∆Ecv is the remainder. If the energy ∆Ec

and ∆Ecv is removed in Eq. 2.21, the denominators contain only unperturbed energies

Veff = V + V
Q

Ev −Hv
V + V

Q

Ev −Hv
V

Q

Ev −Hv
V + . . . (2.23)

The effective interaction series expansion is said to be given in Rayleigh-Schrödinger form.
An introduction to effective operators in finite nuclei is given in Ref. [15]. Each term in
Eq. 2.23 will produce a series of interaction diagrams. The type of diagram is determined by
the exact form of the propagator. An introduction to such diagrams is given in Ref. [16] p.
333.

There are many technical details not mentioned here. For a full account of the theory of
nuclear effective interactions, see Ref. [14] and references therein.

2.2.2 The G-matrix

Two-body matrix elements of the nucleon-nucleon interaction diverge if uncorrelated two-
body wave functions are used. Within G−matrix theory, the nucleon-nucleon correlation is
taken into account. In other words, the correlation effects that the interaction introduce must
be incorporated into the A-particle wave function, see Ref. [17] Sec.III.2.

The G-matrix is the solution of the Bethe-Salpeter equation [14], which on operator form
is given by

G(ω) = V + V
QF

ω −H0
G(ω) (2.24)

The states in a nucleus below the Fermi surface, εF , can only scatter to states above, therefore
the Pauli operator QF is included. This operator is equal to zero when summing over states
below εF otherwise equal to one. A simplified and very quantitative way of seeing how
the G-matrix handles the mathematical difficulty of the infinitely strong nucleon-nucleon
repulsion at short distances is to formally solve Eq. 2.24, and let the residual interaction V
go to infinity.

G = V + V
QF

ω −H0
G⇒ G =

V

1− VQF /(ω −H0)
→ 1 as V →∞ (2.25)

In Ref. [17] the Bethe-Salpeter equation is treated extensively. In Eq 2.25, ω is the so-called
starting energy4. The energy ω reflects how the interacting nucleons depend on the rest of
the system, and H0 is the unperturbed Hamiltonian. A detailed description of how to nu-
merically solve the G− matrix in finite nuclei can be found in Ref. [14].

A very intuitive approach to understand the idea behind the G−matrix is given in terms
of the separation method of [18]. The repulsive part of the nucleon-nucleon interaction is
balanced by its attractive part since the deuteron is bound. The nucleon-nucleon potential in
Fig. 2.1 can be divided into two parts, a short-range part VS and the long range part VL. The

3Energy of the core nucleon system if it was described by the unperturbed Hamiltonian H0
4The resulting G-matrix is relatively independent on the starting energy [14] p. 192
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distance at which VS ends and VL starts is called the separation distance (or healing distance)
d. The distance d is chosen such that the attractive part in VS balances the repulsive core. The
G-matrix is then to a good approximation given by

G ∼ VL(r) (2.26)

The separation distance is typically about 1 fm [14]. The G-matrix is solved for a pure hard-
core potential in infinite nuclear matter in Ref. [19].

The perturbation expansion given in Eq. 2.23 for an effective interaction is only convergent
for small V . A suitable choice of effective interaction is therefore the G-matrix.

Veff = G+G
Q

Ev −Hv
G+G

Q

Ev −Hv
G

Q

Ev −Hv
G+ . . . (2.27)

Effective matrix elements obtained with the program codes developed by Hjorth-Jensen [14]
are presented in Appendix A.

2.2.3 Effective Charge

The model space wave function |ΨD〉 is a projection of the true wave function |Ψ〉. The
expectation value 〈ΨD|O|ΨD〉 of an operator O can not be expected to give the true physical
result. This is because information is lost in the projection onto the model space. Just as an
effective interaction operates in the model space, a general effective operator can be defined
as

〈Ψa
D|Oeff|Ψb

D〉 =
〈Ψa|O|Ψb〉√
〈Ψa|Ψa〉〈Ψb|Ψb〉

(2.28)

The normalization of the true wave functions have not been mentioned previously. The de-
nominator in Eq. 2.28 takes into account that the true wave functions are not normalized to
unity5.

The effective charge eeff is introduced in order to account for the effects of the Q space on the
transition excluded in the shell-model space P . With the electric quadrupole operator E2
used in the following, the effective charge can be written

eE2
eff = e

(
1
2
− tz

)
+ eE2

pol (2.29)

The effective charge defined in Eq. 2.29 is given in isospin formalism, where tz = 1/2 gives
the neutron effective charge and tz = −1/2 gives the proton effective charge. The difference
between the bare charge, e, and the effective charge eeff is called the polarization charge epol.

The same value of the effective charge can be used for similar transitions for nuclei in the
same model space. The concept can be given a physical meaning. This important point
should be repeated. The value of the effective charge is dependent on the size of the model
space and the type of effective interaction that operates within this space. The effective

5The true wave functions |Ψ〉 are normalized according to 〈Ψ|ΨD〉 = 〈ΨD|ΨD〉 = 1. The |Ψ2| deviation from
unity can be evaluated order by order if Eq. 2.13 is iterated
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charge may depend weakly on the orbit considered [20], but the state independent approach
is accepted in many applications [16]. A single value on the effective charge is enough to re-
produce the various transition rates within one shell well enough. This is a property which
has made the effective charge concept so valuable [16].

2.3 The Nuclear-Shell Model

The average distance between two nucleons in finite nuclei is about 1.8 fm. It is crucial that
the healing distance is shorter than the average nucleon-nucleon separation. This tells us
that the residual interaction is weak, or in other words that nuclear excitations rarely are
due to nuclear collisions [17].

The eigenfunctions Φ of the pure shell-model Hamiltonian H0 are called orbits. The or-
bits of the one-body Hamiltonian including the nuclear spin-orbit coupling ` · s as intro-
duced by [21, 22] has enjoyed great success in describing the experimentally observed shell-
structure and so-called magic numbers. The nuclear shell-model is thoroughly reviewed in
Ref. [17].

Neutrons and protons are classified in terms of the n, `, j (shell quantum number, orbital
angular momentum, and total angular momentum) using the notation n`j together with
spectroscopic notation for `, i.e. s, p, d, f, . . .. In Fig. 2.2 the effect of including the ` · s term
in a Woods-Saxon type potential is clearly seen.

The shell gaps at the magic numbers provide for a natural truncation of the full shell-model
space. The effective interaction is tailored for each type of model space. The results from
diagonalizing the effective Hamiltonian in this space is generally in good agreement with
experiment. The calculations in the Sn isotopes presented in Ch. 6 was carried out in a va-
lence space consisting of the neutron orbits 1g7/22d5/22d3/23s1/21h11/2 with 100Sn considered
as an inert core.

The fact that the true nuclear Hamiltonian H can be divided into two parts, H0 and V ,
as defined in Eq. 2.4, is the basic foundation of the nuclear shell-model. The introduction
of a central one-body field ui in H is not without problems. By placing the A nucleons in
a central potential fixed in space, a set of eigenvalues purely related to center of mass mo-
tion is introduced. The eigenvalues of interest originate from the relative motion between
nucleons. There are methods of dealing with these so-called spurious states [17].

2.4 Coulomb Excitation

Coulomb excitation is the physical process in which a target/projectile nucleus is excited by
the electromagnetic field of a projectile/target nucleus. The theoretical framework [23, 24]
is well established [24]. In our case we have projectile energies below the Coulomb barrier.
The case of higher projectile energies is described in Ref. [25]. The primary advantage in
using sub-barrier Coulomb excitation is the inherent exclusion of any strong force compo-
nent in the excitation process. The maximum projectile energy which does not penetrate the
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Figure 2.2: The nuclear shell-model orbits based on a Woods-Saxon type potential.
In (a) the resulting energy levels without ` · s coupling. In (b) the resulting energy
levels including the ` · s coupling. Note that the experimentally known magic
numbers are reproduced nicely.

Coulomb barrier is given by [26]

Emax = 1.44
Ap +At

At
· Zp · Zt

1.25(A1/3
p +A

1/3
t ) + 5

MeV (2.30)

In Equation 2.30 t denotes target and p denotes projectile. Staying below Emax corresponds
to a minimum separation between the nuclear surfaces of about 5 fm. In the following,
projectile excitation is assumed, and the formulas are given in the center of mass frame of
reference. Furthermore, it is intuitively easier to describe Coulomb excitation using a semi-
classical approach. This approach is valid for many cases, which will be shown below, and
more importantly for the experiments discussed in this licentiate thesis.

2.4.1 Semi-Classical Theory

The difference between a full quantum mechanical treatment and a semi-classical one, lies
primarily in how the impinging particle trajectory is described. In the semi-classical treat-
ment, the relative motion is described classically, while the electromagnetic interaction lead-
ing to excitation of a nuclear state is described in first-order perturbation theory. The dimen-
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sionless Sommerfeld parameter6, η, gives a measure on the applicability of classical trajecto-
ries.

η =
Z1Z2e

2

~υ
(2.31)

where Z1 and Z2 are the charge numbers of the projectile and target, respectively, and υ is
their relative velocity. For the particle to follow a classical trajectory, η >> 1 must hold,
which is the case for the three experiments discussed in this thesis. The differential cross
section for nuclear excitation from state |i〉 to state |f〉 is given by(

dσ

dΩ

)
i→f

=
dσ

dΩR
· Pi→f (2.32)

where (dσ/dΩ)R is the Rutherford differential cross section7 for scattering into the solid an-
gle dΩ , and Pi→f is the probability for nuclear excitation. For the classical picture to still
hold, the energy transfer ∆E must be smaller than the center of mass energy E = 1

2moυ
2.

The energy difference ∆E, is equal to the excitation energy of the state |f〉.

A quantity that characterizes the excitation probability is the adiabaticity parameter ξ

ξi→f =
∆Eτ

~
(2.33)

where τ is the collision time. The collision time can be estimated using half the distance of
closest approach together with the known relative velocity.

τ =
a

υ
(2.34)

∆E/E, can now be written
∆E
E

=
2ξi→f

η
(2.35)

For the cases presented here, sub-barrier Coulomb excitation can be treated within the semi-
classical picture. The semi-classical expressions of the excitation process does not include
how the motion of the particles is altered due to the excitation. This can be approximately
included by a symmetrized expression for a and ξ in the following way [23]

ξ̃ =
Z1Z2e

2

~

(
1
υf
− 1
υi

)
(2.36)

ã =
Z1Z2e

2

m0υiυf
(2.37)

The excitation probability is given by

Pi→f = |aif |2 (2.38)

6An equivalent form of η is Z1Z2e2

~υ
= b

2λ
where b = 2Z1Z2e

2/m0υ
2 is the distance of closest approach, and λ

is the wavelength of the projectile
7 dσ

dΩ R
= 1

4
a2 sin−4(ϑ/2), where a is half the distance of closest approach a = 1

2
b = Z1Z2e2

m0v2
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where the excitation amplitude aif can be calculated in first order perturbation theory if the
strength of the interaction V (~r(t)) is weak,

aif =
1
i~

∫ +∞

−∞
〈f |V (~r(t))|f〉ei∆Et/~dt (2.39)

See [23, 24] for details.

Once the electromagnetic interaction has been decomposed into its multipole components [23,
24], the differential cross section for electric excitation of the projectile of multipole order λ
is given by

dσEλ =
(
Zte

~υ

)2

a−2λ+2B(Eλ)dfEλ(ϑ, ξ) (2.40)

Expressions for the df functions can be found in [23]. They are plotted in Fig. 2.3. The
reduced transition probability, B(Eλ), is defined as

B(Eλ; i→ f) =
1

2Ii + 1
|〈i||M(Eλ)||f〉|2 (2.41)

where Ii is the total angular momentum of state |i〉, and M(Eλ) is the electric multipole
moment operator

M(Eλ) =
∑

k

ekr
λ
kYλµ (2.42)
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Figure 2.3: The classical dfdΩ functions. Values taken from Ref. [23]. The df
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Chapter 3

Experimental Method

The three nuclei, 106Sn, 108Sn, and 110Sn investigated in the present thesis require the use
of Radioactive Ion Beams (RIBs). This chapter gives a brief description of the method of
producing a RIB using the Isotope Separator On-line (ISOL) technique and the subsequent
post-acceleration. The MINIBALL detector setup and acquisition system will also be out-
lined. The nomenclature of the three experiments is given in Tab. 3.1.

Abbreviation Experiment
X10 ∼ 106 pps 110Sn@2.82 MeV/u on a 2.0 mg/cm2 thick 58Ni secondary target
X08 ∼ 106 pps 108Sn@2.82 MeV/u on a 2.0 mg/cm2 thick 58Ni secondary target
X06 ∼ 105 pps 106Sn@2.83 MeV/u on a 2.0 mg/cm2 thick 58Ni secondary target

Table 3.1: Reference abbreviations used in the text. E.g. X08 refers to the experi-
ment where 106 108Sn particles per second at an energy of 2.82 MeV/u impinged
on a 2.0 mg/cm2 thick 58Ni target.

Coulomb Excitation Parameters

The experimental conditions for the three experiments summarized in Tab. 3.1 lead to the
Coulomb excitation parameters summarized in Tab. 3.2.

3.1 Production of Radioactive Isotopes at ISOLDE

Radioactive isotopes are produced at ISOLDE [27] by bombarding a thick primary target by
3 · 1013 1.4 GeV protons delivered by the CERN PS Booster (PSB) in a 2 µs long pulse every
1.2 seconds, Fig. 3.1. Upon impact a wide range of exotic nuclei are formed by three dif-
ferent processes: spallation, fission, and fragmentation. Spallation is the process where high
energy protons that impact upon the heavy target nucleus cause some 20 − 40 nucleons to
be knocked out and/or ’boiled off’ by the heat produced in the collision. The target nuclei
are shattered and the result is a few larger residues and a large number of free nucleons.
Spallation requires high energy, ≥ 500 MeV/u.

The isotopes produced in the primary target diffuse through the target material and effuse

15
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Parameter X10 X08 X06
asym

t (fm) 9.48 9.54 9.57
asym

p (fm) 9.46 9.53 9.56
ηi 131.8 131.8 131.5
ηf,t 132.7 132.7 132.4
ηf,p 132.5 132.5 132.3
ξt 0.90 0.91 0.91
ξp 0.75 0.75 0.75

Table 3.2: Coulomb excitation parameters for the three experiments discussed in
this licentiate thesis. The index p/t appended to some parameters indicate projec-
tile/target excitation. See Sec. 2.4

into a cavity. It is crucial to shorten the release process in order not to lose beam intensity
through radioactive decay. This is accomplished by heating the target to ∼ 1200◦C. The
present experiments used a LaCX (Lanthanum Carbide) 27 g/cm2 thick primary target. The
isotope of interest was singly ionized in the cavity using a three-step laser ionization scheme
and extracted with a 60 kV potential.

Yield measurements of the extracted beam showed that it was contaminated by In, see Pa-
per I. The electro-chemical properties of In lead to surface ionization through contact with
surrounding material and will accordingly contaminate the RIB. It is important to map the
In isobaric contamination over time through the experiment, see Sec. 4.2.6). During the X08
experiment the In yield was reduced by adjusting a beam gate. The diffusion time through
the primary target is shorter for In than for Sn. The beam gate was closed for 2.5 seconds
after proton pulse impact and then open for 7 seconds before the next proton pulse arrived.
For the X06 experiment the beam intensity was too low and the beam gate was not used in
order to maximize the total yield from the primary target. For the X10 experiment the beam
gate was opened immediately after proton pulse impact.

3.2 Post-acceleration at REX-ISOLDE

The low energy, singly charged, RIB delivered by ISOLDE is post-accelerated by the REX-
linac. Before acceleration the ions are cooled, bunched, and charge bred. The increase in
charge is advantageous especially for RIBs since it will shorten the acceleration distance of
the beam and therefore the total time elapsed between ion production and experiment. Fur-
thermore, the REX-linac requires a mass to charge ratio A/q < 4.5. The mass range can be
extended by selecting certain charge states. More than 600 isotopes of approximately 70 ele-
ments are available [28].

Charge breeding is performed in the Electron Beam Ion Source (EBIS) [29]. Before injection
into the EBIS, the beam is cooled and bunched by a Penning-type trap (REXTRAP) which is
a 1.3 m long construction contained in a superconducting magnet, that provides a 3 T mag-
netic field parallel to the beam line. Depending on the beam, the cycle time is up to 20 ms.
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Figure 3.1: The CERN accelerator complex. The protons are produced by strip-
ping orbital electrons from hydrogen atoms. Linac2 accelerates the protons to 50
MeV and the PSB brings them up to 1.4 GeV. Some of the protons are delivered to
ISOLDE while the remainder is injected into the Proton Synchrotron (PS) which
supplies the entire CERN complex.

The equations of motions inside an ideal Penning trap can be solved analytically [30]. Lon-
gitudinal confinement is provided by an applied electric potential. With a tuned buffer gas
pressure1 inside the trap, the energy loss due to collisions will be sufficient for the ions to
not overcome the entrance potential after reflection at the exit potential barrier. Radial con-
finement of the particles is achieved by the applied magnetic field. The radial motion can
be decomposed into two circular eigenmotions in the same direction, magnetron motion
and reduced cyclotron motion, Fig. 3.3, with frequencies ω− and ω+ respectively. The sum
ω+ +ω− = ωc is the true cyclotron frequency that depends on the charge of the ion, the mag-
netic field strength, and the ion mass. Due to collisions with the buffer gas the magnetron
radius increases while the reduced-cyclotron motion is cooled. Hence, buffer gas cooling

1typically 10−4 mbar Ne in the trap center, [28]



18 Experimental Method

Figure 3.2: The ISOLDE hall

alone cannot cool the overall motion of the ions. A radio frequency field (rf) that oscillates
with the cyclotron frequency ωc couple the magnetron and reduced cyclotron motions. This
so-called side-band cooling [31] causes an energy transfer between the two motions. The
procedure is slightly perturbed by ion-ion interactions, but nonetheless the technique pro-
vide adequate cooling for injection into the EBIS.

The ion bunch is injected to the EBIS through a beam transfer line. Inside the EBIS a 4.5
keV strongly focused electron beam bombards the ions and they undergo stepwise ioniza-
tion. The electron beam is confined in a 1m long cylindrical space by a longitudinal magnetic
field. The ions are fixed in space by the negative potential of the electron beam and an elec-
tric potential. The charge breeding time increases with mass and charge state. The breeding
time for the X06/X08 experiments were 67 ms for 26+ ions with a resulting beam period of
70 ms. The charge state for the Sn ions during the X10 experiment was 27+. The charge state
of interest is selected by a mass separator after the EBIS. The separator also removes buffer
gas remnants from the REXTRAP and the EBIS.

The beam energy is ∼ 5 keV/u after the EBIS and the REX-linac [32] accelerates the ions
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Figure 3.3: (Left)The three eigenmotions of a single ion inside a Penning trap.
The oscillation frequencies obey ω− << ωz << ω+ ≈ ωc. (Center) The alone
action of the applied magnetic field can not cool the ion motion. The radius of the
magnetron motion increases. (Right) With the inclusion of an rf field the reduced-
cyclotron motion and the magnetron motion is coupled and as a result radial cooling
is achieved.

to ∼ 3 MeV/u. The linac consists of, in order, a radio-frequency quadrupole (RFQ), a res-
onator with drift tubes of increasing length (IH-structure), a 7-gap and a 9-gap resonator.
For details about the linac and beam production at REX-ISOLDE see Ref. [28] and references
therein.

3.3 Detectors

A schematic overview of the experimental process is presented in Fig. 3.4. Both the 58Ni
target and the particle detector are placed in the target chamber, which is kept under a
10−6 mbar pressure. A PPAC monitors the beam, to steer it onto the center of the target.
Approximately 1 m further downstream is the beam dump which is monitored by a coax-
ial Germanium detector. The angular coordinates are defined from a right-handed polar
coordinate-system with the positive z-axis in the direction of the beam axis. The distance be-
tween the 58Ni target and the particle detector was d = 30.6 mm for the X10 experiment. For
the X08/X06 experiments a few details had changed inside the target chamber. A protection
plate originally mounted upstream in the chamber had been removed and was replaced by
a tantalum collimator. The distance d was calculated for the X08/X06 experiments using an
α-source placed at the target position. The geometry of the particle detector is known, and
the ratio between the expected number of particles and the measured number of particles
compared between all strips depend on d due to differences in the solid angle coverage of
each strip. Using this method gives d = 30.0± 0.6 mm.

3.3.1 Particle Detector

The particle detector, Fig 3.5, is a circular Double-Sided Silicon Strip Detector [33] (DSSSD).
The DSSSD comprises 4 independent quadrants. The front of the detector is divided into 16
annular strips of 1.9 mm width and 2 mm pitch. The back is divided into 24 sectors at 3.4◦
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Figure 3.4: A schematic drawing of the experimental setup. The angles are defined
as they are referred to in the text.

pitch, see Fig. 3.5. In total this gives 4 · 16 · 24 = 1536 pixels for the DSSSD. However, in the
electronic setup the radial back strips were connected pairwise, reducing the total number
of pixels to 768. The Si wafer thickness was 480 µm. The active area of the detector was 91%
of the total area [34].

Figure 3.5: The Double-Sided Silicon Strip Detector (DSSSD).

3.3.2 γ-ray Detector

The MINIBALL detector array contains eight triple-clusters. Each triple-cluster comprises
three γ-ray detectors, each referred to as a crystal. Each crystal is six-fold segmented. The
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Figure 3.6: The MINIBALL germanium detector array. Eight triple-clusters sur-
round the target chamber in a close to 4π configuration.

segmentation improves the angular resolution of the detected γ-ray. The crystals are High
Purity Germanium (HPGe) detectors encapsulated in an aluminum cap. The six segments
are read out independently. The central electrode of the crystal is referred to as the core to
which the negative potential is applied. The voltage required to reach a sufficient depletion
region is 2.5−4.5 kV per crystal. The crystals are kept at liquid nitrogen (LN2) temperatures,
supplied by LN2 transfer lines from a 500 liter dewar to each triple-cluster.

The distance between the 58Ni target and the crystal was 12.5 cm. The tripe-cluster cen-
ter to cluster core center distance was 3.5 cm. The point of γ-ray interaction was assumed to
be the center of gravity of the segment surface. The total solid angle coverage for the MINI-
BALL in this configuration is ∼ 60% of 4π [34]. The position of a triple cluster is determined
by three angles (θ,φ,α), defined in Fig. 3.7

3.4 Electronic Setup and Data Acquisition

For a detailed description of the electronics setup see Ref. [35]. The experimental output
are primarily of two different types; particle data and γ-ray data. Also in the particle data
stream the DSSSD is divided into four quadrants. Each quadrant is treated separately from
every other. As mentioned, the 24 radial back strips of a quadrant are paired in the hard-
ware to 12 channels. The 16 annular front strips of each quadrant are all read out. For the
X08/X06 experiments it was possible to distinguish multiple front/back signals within the
same quadrant, while for the X10 experiment this was impossible since the electronic setup
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Figure 3.7: A schematic drawing of a MINIBALL triple-cluster. The (θ, φ) angles
are defined from the same right-handed polar coordinate system as the rest of the
experimental setup. The α angle determines the clockwise (as seen from the target
position) rotation around the center of the triple-cluster.

did not include TDC front strip readout.

The six segment signals plus one core signal from each γ-ray detector were read out by
two XIA DGF modules [36]. The energy of the γ-ray was stored in the core channel. Pulse
shape analysis [37] was not used in the experiment since it has a very small effect in this
case [38]. The DGF modules were synchronized using a so called BUSY-SYNCH loop. When
a DGF starts a run the BUSY output is set to logic one. All the BUSY outputs are OR’ed in
a fan-in/fan-out module and the output is sent back into the input called SYNCH of each
DGF. In this way all the DGF modules will start and stop acquisition at the same time.

A γ-gate signal was created whenever a core signal was detected. When the γ−gate was
coincident with a particle signal a logic signal was sent to the trigger box. If the particle-γ
time difference was larger than 800 ns the trigger box gave a signal only every 2n coincidence,
so-called downscaling. The experiments presented in this licentiate thesis use a downscaling
of n = 6 (26 = 64). The signals required to produce an ADC readout gate are summarized
and presented in Fig. 3.8.

Particle and γ-ray signals were correlated in time by sending each DSSSD gate to a dedi-
cated DGF timestamp module.

3.4.1 MED Data Format

Data was written to disc in MED format (MBS Event Data) [39] which is a standard format.
Notations used here are compliant with Ref. [39].
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Figure 3.8: The ADC gate will be produced and all the TDC modules will be
stopped if: either particle-γ coincidence or a downscaled particle was detected and
either on or off window is detected (indicated by GFLT) and the ADC is not busy
and the DGF is not busy and the DAQ is not dead.

An MED data file contains a stream of MBS events of standard type. Each event contain
a series of sub-events that follow the MARABOU [40] event type standard. The two types of
sub-event formats of primary importance are given in the list below.

• DGF sub-event format. The γ−ray data storage format.

• CAEN sub-event format. The particle data storage format.

DGF sub-event Buffer

Three types of information, which are of primary importance for the analysis, are stored in
the XIA DGF sub-event buffer:

• The energy, timestamp, module number, and channel of the detected γ−ray. The times-
tamp gives the time of detection. The module number identifies which Ge-crystal the
γ-ray was detected in. The channel is a number between 0 and 3, and identifies which
segment the γ-ray was detected in.

• Particle DGF-timestamps. For each particle gate, the corresponding time is stored in
a dedicated DGF module. A common time scale enable the particles to be correlated
with the γ-rays.

• ISOLDE signal timestamps: EBIS, T1, PS. For each ISOLDE event, the time is stored
in a dedicated DGF. The EBIS timestamp indicates the time of release of the particles.
The T1 timestamp gives the time of the last proton pulse impact on the target. The PS
timestamp gives the time of the last proton supercycle. A supercycle is defined as a
group of 12 proton pulses.

A full account of the DGF sub-event buffer is given in Tab. 3.3. To relate a DGF mod-
ule/channel number etc. with the physical equipment require information about the hard-
ware cabling. The module numbers and channels used in the data analysis code is presented
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buffer header
buffer wc number of 16 bit words in this buffer
module number module serial numbera

format descriptor data format used for channel data
buffer time 48 bit buffer starting time

event header
hit pattern one bit per active channel
event time 32 bit event starting time

channel header
word count number of 16 bit words written for this channel
fast trigger time time of arrival
energy converted energy value (note, not in keV)
PSA value pulse shape analysis information
GSLT time 48 bit arrival time of global second level trigger
realtime time since last reboot or reset
trace data array containing trace data

aserial configuration stored in .rc file from running the Config.C script

Table 3.3: DGF Sub-event buffer content. On the left hand side is the name of each
data container as defined in [39] and on the right hand side a short description. See
text and Ref. [39] for details.

in Tab. 3.4 The time stamp is given in two formats, realtime and fast trigger time .

moduleNumber channel

1-48
For odd moduleNumber chn0=core chn1=seg chn2=seg chn3=empty
For even moduleNumber chn0=seg chn1=seg chn2=seg chn3=sega

49 chn0=DSSSD Q1 DGF timestamp
50 chn0=DSSSD Q2 DGF timestamp
51 chn0=DSSSD Q3 DGF timestamp
52 chn0=DSSSD Q4 DGF timestamp
53 chn0=EBIS chn1=T1 chn2=PS

aAs mentioned, two DGF modules are required for each Ge-crystal.

Table 3.4: The DGF modules, identification moduleNumber, and the physical equipment

The fast trigger time is the time elapsed since the start of the event, and the realtime
is the time with respect to a much larger time scale stretching over the entire experiment and
longer. Time differences stretching over event boundaries must use realtime .

CAEN sub-event buffer

The particle ADC/TDC (CAEN V775) [41] were stored in the CAEN type sub-event buffers.
Each CAEN buffer may contain up to 32 events. Each event is tagged with the module
number. This is the information needed to connect the buffer data with the correct quadrant.
The critical information is the module serial number and the channel data. The differences
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crate crate numbera

wc number of channel data (32 bit)
mserial module serial number
channel channel number (0...31)
data 12 bit ADC/TDC data + 1 bit overflow + 1 bit underflow
event count number of events since the last reset

anot used

Table 3.5: The CAEN sub-event buffer

mserial detector information
55 DSSSD Q1 ADC energy
56 DSSSD Q2 ADC energy
57 DSSSD Q3 ADC energy
58 DSSSD Q4 ADC energy
59 DSSSD Q1 TDC time
60 DSSSD Q2 TDC time
61 DSSSD Q3 TDC time
62 DSSSD Q4 TDC time

Table 3.6: The CAEN modules and the corresponding information

between the X10 experiment and the X08/X06 experiments regarding the hardware cabling
and the type of data stored are:

• X10:

– ADC chn 0-15: Front plane annular strips 0-15. Physically the strips are numbered
from outer strip→ inner strip.

– ADC chn 16-27: Back plane sector strips 0-11. Physically in the clockwise direction
as seen from the direction of the beam.

– TDC chn 0-11: Back plane TDC time for sector strips 0-11. Physically in the clock-
wise direction as seen from the direction of the beam.

– No TDC Front plane data in data stream.

• X08/X06:

– ADC chn 0-15: DSSSD front plane annular strips 0-15. Physically the strips are
numbered from outer strip→ inner strip.

– ADC chn 16-27: DSSSD back plane sector strips 0-11. Physically in the clockwise
direction as seen from the direction of the beam.

– TDC chn 0-7: DSSSD front plane TDC time for annular strips 0-15. The strips were
coupled pairwise in the hardware.

– TDC chn 16-27: DSSSD back plane TDC time for sector strips 0-11. Physically in
the clockwise direction as seen from the direction of the beam.

– ADC DSSSD Q1 chn 29: Laser Power (not present in the X10 experiment).
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Pattern Unit

The pattern unit (PU) is read out for each ADC gate. The PU contains data regarding the
particle data written and the laser status.

bit information
1 Downscaled particle Q1
2 Particle-γ coincidence Q1
3 Downscaled particle Q2
4 Particle-γ coincidence Q2
5 Downscaled particle Q3
6 Particle-γ coincidence Q3
7 Downscaled particle Q4
8 Particle-γ coincidence Q4
9 Laser flag (not present in the X10 experiment)

Table 3.7: Pattern Unit (PU) bits. A bit=1 means TRUE and 0 means FALSE.
Regarding bit 9, the laser flag, 1 means Laser On, and 0 means Laser Off.

3.5 Physical Event Structure

In our case a physical event involves two scattered particles and a γ-ray. To construct the
physical event two pieces of information are needed; a particle-particle time coincidence cut
and a particle-γ time coincidence cut.

A particle was reconstructed from signals coincident in time between the front plane and
the back plane of the DSSSD.

• For the X10 experiment there was no TDC front plane information. Therefore a particle
was constructed only when the front plane and back plane hit multiplicity was equal
to one.

• For the X08/X06 experiments a front-back hit time coincidence condition of 90 ns was
deduced. Imposing this condition in the data analysis increased the number of parti-
cles possible to construct with 80%.

• A time coincidence condition of 60 ns was obtained for adjacent strip coincidences
between the front plane or back plane strips. In total, 20% of the front plane hits and
13% of the back plane hits were coincident. The strip energies were added, and the
strip with the highest energy was chosen to represent the position of the combined
signal and the time was set to the average time of the two signals. With adjacent strip
coincidences the ambiguous front-back particle coincidences were 4%.

The energy of the physical particle is the sum of the front and back plane energy and the
particle time is the DGF time stamp for the corresponding quadrant.

Two different types of particle events can occur. Due to the kinematical situation, see Sec. 4.2.3,
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the recoil can scatter with angles larger than what is covered by the particle detector. The
projectile always undergo scattering with angles lower than the maximum particle detection
angle. There exists an angular interval (2p range) that is covered by the DSSSD and in which
both the projectile and recoil within the same event can scatter simultaneously. This type of
event is called a two-particle event (2p). The particles in a 2p event are detected in opposite
quadrants, see Fig. 3.9.

• Two scattered particles were considered to be of 2p type if they were detected in oppo-
site quadrants of the DSSSD. Furthermore, the time difference between them had to be
less than 100 ns, as deduced from Fig. 3.9.

• If only one particle was detected in the 2p range of the detector, the event was classified
as a 1p event.

• The entire data set was composed of, 40% 2p events and 60% 1p events for the X10/X08
experiments, while for the X06 experiment the fractions were 80% 2p and 20% 1p. This
merely reflects the effect of a higher particle rate in the X10/X08 experiments.

Regarding the γ−ray data:

• The γ-rays within a 4µs time window around each particle or particle pair2 were as-
signed to the event.

• If a γ-ray could not be assigned to a particle unambiguously in time it was discarded.

• No γ−rays had to be discarded in the 2p event subset.

• For 1p events, a maximum of 4% of the γ-rays were discarded in the data from the X08
experiment.

2For 2p events the average time of the pair was used as particle timestamp.
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Figure 3.9: The data is from the X08 experiment. Time difference between scattered
particles within an MED event buffer. Particles are scattered in a plane and true
coincidences will therefore occur in opposite quadrants. A 2p coincidence cut 100
ns was determined, indicated with dashed lines.



Chapter 4

Data Analysis

This chapter describes the method used to extract the reduced transition probabilities,

B(E2; 0+
gs → 2+

1 ) (4.1)

for the 106,108,110Sn isotopes. The low lying energy levels of the Sn isotopes are shown in
Fig. 4.2.

4.1 Software

The data analysis was carried out within the ROOT framework [42]. The computer codes for
offline data analysis were developed during the course of the work, Fig. 4.1.

• Format Conversion: convert MED data file, Sec. 3.4.1, to ROOT format. The I/O han-
dling is based on R. Lutter’s mbs2asc program [43].

• Event Building: Build physical events, Sec. 3.5.

• Analysis: Programs for Doppler correction.

• GOSIA2: Coulomb excitation analysis software written by T. Czosnyka et al. [26].

ROOT is a program intended for data analysis of particle and nuclear physics experiments.
The ROOT data file can be handled with C++ compatible scripts and programs. The data file
is compressed, but the access to a specific entry is very fast.

4.2 Analysis Method

The signature of Coulomb excitation from a state |i〉 to a state |f〉 is two scattered particles
in coincidence with one emitted γ-ray coming from the |f〉 → |i〉 transition. The analysis
comprised three steps:

• A particle-γ coincidence condition.

• Doppler correction of detected γ-rays.

• Determination of the isobaric contamination of the beam, see Sec. 3.1.

29
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Figure 4.1: Overview of the data-analysis method.
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Figure 4.2: The low lying energy levels in the 106,108,110Sn isotopes. The 6+ state
present in all three isotopes is isomeric due to the small E(6+) − E(4+) energy
difference. The isomer hampers any lifetime measurement when populating the
2+
1 state from above. Therefore the method of sub-barrier Coulomb excitation is

especially advantageous in these isotopes.

Equation 4.2 relates the experimental data with the B(E2) value of interest

B(E2)Sn ∝ ·
Nγ(Sn)
Nγ(Ni)

· εγ(Ni)
εγ(Sn)

·B(E2)Ni · R−1 · W (4.2)

where Nγ is the number of counts in the Coulomb excitation peak, εγ is the relative γ-ray
detection efficiency, R is the fraction of the the Nγ(Ni) due to excitation caused by the Sn
ions, W is the γ-ray angular distribution ratio between the projectile and target. In order
to evaluate the proportionality in Eq. 4.2 exactly, the expression in Eq. 2.40 are integrated
for both projectile and target for each experiment. The integration is done by GOSIA2, see
Sec. 4.4.
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4.2.1 Add-Back and γ-ray Detection Efficiency

The add-back routine increases the number of γ-ray counts in the peaks of interest. If two
γ rays are detected within a time window of |∆t| < 100 ns, Fig. 4.3, in neighboring Ge-
crystals within the same triple-cluster their energies are added. The direction (θγ , ϕγ) of the
resulting add-back γ-ray was chosen to correspond to the crystal in which the most energetic
original γ ray was detected. The resulting add-back γ-ray spectrum contains ∼ 10% more
statistics, Fig. 4.4. Add-back was used only for the X08/X06 experiments. Only the relative
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Figure 4.3: Time difference between γ rays in neighboring crystals within the same
triple cluster. The dashed lines indicate the time coincidence cut of |∆t| < 100ns.
If two gamma rays are detected within ∆t their energy are added. The plot shows
152Eu calibration data from X08. The corresponding plot for X06 is similar and the
same time coincidence cut was extracted.

efficiencies are of relevance in Eq. 4.2. This efficiency was determined by measuring single
γ-rays from a 152Eu source. The relative intensities of the emitted γ-rays are known from
Ref. [44]. The resulting efficiency curves are given in Fig. 4.5.

4.2.2 Particle-γ Coincidence

The time difference,∆tpγ , between a particle and a γ-ray allow for selecting only true particle-
γ coincidences, referred to as prompt. A ∆tpγ was set for each quadrant. Table. 4.1 gives a a
summary of all cuts and Figs. 4.6 and 4.7 show typical particle-γ time differences. It is crucial
to align the timing of the DAQ such that the prompt peak is not downscaled. See Sec. 3.4 for
details regarding downscaling.
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red γ-ray peaks include the add-back correction. The blue γ-ray peaks does not
include the add-back correction. The peak marked for comparison in this figure is
located at 1408.0 keV.

4.2.3 Energy Loss and Kinematics

In our case the projectile nucleus is two times as heavy as the target nucleus leading to in-
verse kinematics. The mass asymmetry between target and projectile also implies a forward
focused momentum cone and an upper limit of the projectile scattering angle in the labora-
tory frame of reference, θmax

LAB [45]

tan θmax
LAB =

1√
K2 − 1

, K =
V

v̄
(4.3)

where V is the velocity of the center of mass frame in the laboratory, and v̄ is the projectile
velocity in the center of mass frame. The projectile θmax

LAB is clearly visible in the left and
right panels of Fig. 4.8. The scattered target nucleus has a maximum scattering angle larger
than the angular coverage of the particle detector. As mentioned in Sec. 3.5, the 2p region is
defined as the angular interval of detection into which a projectile and a target particle can
scatter simultaneously. The lower limit of the 2p region is denoted θ2p.

The projectiles will undergo energy loss when traveling through the 2 mg/cm2 thick (equiv-
alent to 2.24 µm) 58Ni target. The energy loss per unit length traveled in the target, dE/dx,
was calculated using the computer code SRIM [46]. Table 4.2 summarizes θ2p assuming scat-
tering in the center of the target with energy loss included. The 2p region is defined from
these values.
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Figure 4.6: Particle-γ time difference spectrum for 1p events.

Due to the finite width of the beam spot, the two different branches in Fig. 4.10 will be
broadened. Imposing the 2p cut have many advantages. In the angular region below 24◦
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Experiment Quadrant Event Type tlow
pγ / ns thigh

pγ /ns |∆tpγ | / ns
X10 Q1 1p 710 840 130
X10 Q2 1p 1143 1238 95
X10 Q3 1p 718 810 92
X10 Q4 1p 1045 1133 88
X10 Q1 2p 710 840 130
X10 Q2 2p 1143 1238 95
X10 Q3 2p 718 810 92
X10 Q4 2p 1045 1133 88
X08 Q1 1p 725 825 100
X08 Q2 1p 725 850 125
X08 Q3 1p 700 800 100
X08 Q4 1p 700 825 125
X08 Q1 2p 700 800 100
X08 Q2 2p 700 825 125
X08 Q3 2p 700 800 100
X08 Q4 2p 750 825 75
X06 Q1 1p 725 825 100
X06 Q2 1p 750 850 100
X06 Q3 1p 700 800 100
X06 Q4 1p 750 850 100
X06 Q1 2p 725 800 75
X06 Q2 2p 750 850 100
X06 Q3 2p 700 800 100
X06 Q4 2p 700 825 125

Table 4.1: Summary of the particle-γ time differences ,tpγ . The condition is tlow
pγ <

tpγ < thigh
pγ . The width of the prompt peak is given by ∆tpγ .

Projectile θmax
LAB θ2p Ecenter

110Sn 31.6◦ 24.1◦ 263 MeV
108Sn 32.2◦ 23.9◦ 268 MeV
106Sn 32.9◦ 24.3◦ 254 MeV

Table 4.2: θmax
LAB is the projectile maximum scattering angle in the laboratory frame

of reference. θ2p is the theoretical angle above which 2p events occur. Ecenter is the
energy of the projectile in the center of the target.

it is difficult to make a clear separation between targets and projectiles. It should also be
pointed out that the Coulomb excitation cross section is smaller for lower scattering angles
as seen in Fig. 2.3.
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Figure 4.7: Particle-γ time difference spectrum for 2p events. Notice the relatively
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4.2.4 Doppler Correction and γ-ray Angular Distribution

The projectile and recoil velocities are ∼ 0.05c and ∼ 0.07c, respectively. The γ-rays of
interest are emitted in-flight and therefore Doppler shifted in energy due to the Doppler
effect. This means that the γ-rays have to be Doppler corrected. The Doppler correction
formula is given by

Eγ = γEdetected
γ · (1− β cos θpγ) (4.4)

where Eγ is the rest frame energy of the emitted γ-ray and Edetected
γ is the energy detected

by the MINIBALL detector. The relativistic quantities are defined as β = v/c and γ =
1/
√

1− β2. The angle between the particle direction of motion and the direction of the γ-ray
is given by

cos θpγ = sin(θp) sin(θγ) cos(φp − φγ) + cos(θp) sin(θγ) (4.5)

The detector positions determined from the MINIBALL frame where the detectors are mounted
does not exactly correspond to their true position. By varying the angles of the detectors in
the offline analysis, the shape of the Doppler corrected peaks could be optimized. The aim
was to reach a small full width half maximum (FWHM) for the Doppler corrected γ−ray
peaks.

The γ-rays are emitted in-flight from target and projectile nuclei which have different masses.
This leads to different γ-ray angular distributions, which are evaluated and corrected for.
This is handled internally by GOSIA2 in the calculation of the B(E2) value. However, it is
interesting to get a handle on the size of the effect. The γ-ray angular distribution for an E2
excitation is given by [23]

WCM (ϑγ) = 1 +A
(2)
2 · aE2

2 (η, ξ)P2(cosϑγ) +A
(2)
4 aE2

4 (η, ξ)P4(cosϑγ) (4.6)
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Figure 4.8: Kinematical plots calculated using a projectile with an energy of 310
MeV in the laboratory frame of reference.(Left) Target: Scattering angle in the lab-
oratory frame of reference versus scattering angle in the center of mass frame of
reference. (Right) Projectile: Scattering angle in the laboratory frame of reference
versus scattering angle in the center of mass frame of reference
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Figure 4.9: Scattered particle energy plotted against scattering angle. The dashed
curves assume scattering in the center of the target. The solid curves include the
energy loss when traveling through the remaining half of the target.

where ϑγ is the angle between the z-axis (the beam axis) and direction of propagation of the
γ-ray in the rest frame of the nucleus emitting the γ-ray. The angular distribution coefficients
aE2

2 and aE2
4 , and the γ − γ correlations coefficients A2 and A4 for a pure E2 2 → 0 de-

excitation are tabulated in [23]. The angular distribution is given in the center of mass frame,
but evaluated in the laboratory frame of reference. The transformation between these frames
is given by [24]

WLAB = WCM · dΩLAB

dΩCM
= WCM · 1− β2

(1− β cos θγ)2
(4.7)
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Figure 4.10: Experimental particle energy, as calibrated using SRIM, versus de-
tection angle in DSSSD. The data is from the X10 experiment.

and the transformation of the detected γ-ray angle θγ and the rest frame angle ϑγ is given
by [24]

tan
(

1
2
ϑγ

)
=

√
1 + β

1− β
tan

(
1
2
θγ

)
(4.8)

In order to estimate the angular distribution ratio W , a βSn = 0.06 and βNi = 0.07 was
chosen together with η = 131 and ξSn = 0.91 and ξNi = 0.75. The resulting ratio is W =
WNi/WSn = 0.999. Typical angular distribution W in both the laboratory frame of reference
and the center of mass frame of reference for both projectile and target nuclei are given in
Fig. 4.12

4.2.5 Particle Reconstruction

The missing particle in the 1p events is reconstructed. The reconstruction of the second
particle from the detected particle follow a scheme:

• With a known energy and angle of the detected particle, it’s center of mass scattering
angle is also known.

• The center of mass scattering angles of two particles from the same physical event is
equal. This means that the energy and angle, in the laboratory frame of reference, of
the second particle can be calculated.

The ratio of the number of γ-rays in the Sn Coulomb excitation peak to the number of γ-
rays in the Ni Coulomb excitation peak must remain consistent when adding the 1p and
reconstructed events to the 2p events. This was verified for all three experiments, see Tab. 4.3
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Figure 4.11: Experimental particle data. Scattered particle energy, calibrated using
SRIM, versus detection angle in DSSSD. The 2p coincidence is applied. (Top) X10
(Middle) X08 (Bottom) X06.

4.2.6 Determination of isobaric Contamination

As mentioned in Sec. 3.1, the isobaric contamination comes from surface ionized In1. The
contamination fraction of the beam was determined by repeatedly switching the RILIS laser

1AIn contaminant in a ASn beam
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Figure 4.12: γ-ray angular distributions calculated for βSn = 0.06 and βNi =
0.07. The plotted W functions in the laboratory frame of reference (LAB) and
center of mass frame of reference (CM) correspond to typical distributions.

Event Types X10 Nγ(Sn)/Nγ(Ni) X08 Nγ(Sn)/Nγ(Ni) X06 Nγ(Sn)/Nγ(Ni)
2p 2.41 ± 0.37 1.73 ± 0.22 0.69 ± 0.15
2p + 1p + Rec. 2.44 ± 0.19 1.72 ± 0.12 0.64 ± 0.09

Table 4.3: Adding the reconstructed (rec.) particles to the 1p event subset is consistent.

on and off. When the laser was switched off, the beam consisted of In only. The laser status
(on or off) was stored in the data stream for the X08/X06 experiments. For the X10 experi-
ment none of the laser related data were stored in the offline data set. The quantity R used
in Eq. 4.2 is

R =
NTOT (Sn)

NTOT (Sn+ In)
(4.9)

where NTOT (Sn) denotes the total number of detected Sn ions, and NTOT (Sn+ In) denotes
the total number of detected beam ions.

Laser On/Off Runs

For the X08/X06 experiments the repetition frequency was dictated by the PS signal. This
signal indicates the start of a new PS Booster cycle and comes every 14.4 seconds. The RILIS
is off for 14.4 seconds then on for 14.4 seconds. The primary target properties can be assumed
not to fluctuate on this time scale. So the In component during one RILIS on period can be
estimated from the previous RILIS off period. When running the laser in on/off mode, the
scattered Sn fraction of the beam is

ROnOff =
NON −NOFF

NON

(
= 1− NOFF

NON

)
(4.10)

WhereNON (NOFF ) denotes the number of particles detected in the DSSSD during an on(off)
period. The uncertainty ∆RON/OFF can be estimated from NON and NOFF using Poisson
statistics.
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Extrapolation to Entire Experiment

In order to get a measure on R, a relationship between on/off runs and pure on runs must
be established. Indium can be Coulomb excited by the target nuclei. The beam energy
and detector setup is kept fixed making the excitation cross section constant. The Coulomb
excitation yield from In during laser off periods in an on/off run is denoted IOFF

γ (In). This
is proportional to NOFF , with a constant of proportionality σ̃

IOFF
γ (In) = NOFF · σ̃ (4.11)

If we denote the total intensity in the In Coulomb excitation peak with ITOT
γ (In) and the

total number of detected In ionwith NTOT (In)

ITOT
γ (In) = NTOT (In) · σ̃ (4.12)

then using Eq. 4.11 gives

NTOT (In) =
ITOT
γ (In)

σ̃
=
ITOT
γ (In) ·NOFF

IOFF
γ (In)

(4.13)

The total number of detected particles is known, NTOT , which means that a good estimate
of R is given by

R = 1−
NOFF (In) · ITOT

γ (In)
NTOT · IOFF

γ (In)
(4.14)

The uncertainty ∆R can be estimated using Poisson statistics.

4.3 The Three Experiments

The γ-ray peak content coming from both target and projectile excitation was extracted, and
the isobaric contamination was determined. Two types of integration methods were applied.
Method one (Integral): The peaks were fitted with a linear/exponential + Gaussian function
and then integrated. Method two (Discrete sum): A simple discrete sum of the bin content.
The background was estimated from an average of the bin content to the left and right of the
peak.

4.3.1 110Sn

γ-ray spectra without any conditions in the data analysis can be viewed in Fig. 4.13. Peaks
of interest and the origin of prominent peaks are marked. After applying prompt cuts, se-
lecting only 2p events, reconstructing the 1p events, and a subsequent Doppler correction,
the Coulomb excitation peaks are clearly visible, Fig. 4.14.
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Figure 4.13: (Top) Singles γ-ray spectrum from X10. The most prominent peaks
are marked, showing energy, transition, and nucleus. (Bottom) Singles γ-ray spec-
trum zoomed in around the energy region of interest. Transitions in target and
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Nucleus Transition Energy / keV Counts Integration Method
110Sn 2+

1 → 0+
gs 1211.9 579.0± 24.1 Discrete Sum

110Sn 2+
1 → 0+

gs 1211.9 588.1± 24.3 Integral
58Ni 2+

1 → 0+
gs 1454.5 237.5± 15.4 Discrete Sum

58Ni 2+
1 → 0+

gs 1454.5 222.8± 14.9 Integral

Table 4.4: The Coulomb excitation γ-ray yields extracted from the X10 data set.

The Coulomb excitation peaks of interest and the corresponding γ-ray yields are sum-
marized in Tab. 4.4.

Isobaric Contamination

The isobaric contamination was determined during the experiment by measuring the beam
current with a Faraday cup both when the RILIS laser was on and off. This currents gave
a measure of the isobaric contamination. This procedure was repeated 10 times during the
experiment in order to detect possible variations in the beam composition. The ratio R was

R = 0.900± 0.014 (4.15)

This is consistent with the online yield measurements at the primary target, see Paper I.

4.3.2 108Sn

γ-ray spectra without any conditions in the data analysis can be viewed in Fig. 4.15. Peaks
of interest and the origin of prominent peaks are marked. After applying prompt cuts, se-
lecting only 2p events, reconstructing the 1p events, and a subsequent Doppler correction,
the Coulomb excitation peaks are clearly visible, Fig. 4.16.
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Figure 4.15: (Top) Singles γ-ray spectrum from X08. The most prominent peaks
are marked, showing energy, transition, and nucleus. (Bottom) Singles γ-ray spec-
trum zoomed in around the energy region of interest. Transitions in target and
projectile are marked with dashed lines.
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Nucleus Transition Energy / keV Counts Integration Method
108Sn 2+

1 → 0+
gs 1206.1 994.0.0± 38.3 Discrete Sum

108Sn 2+
1 → 0+

gs 1206.1 1034.7± 60.7 Integral
58Ni 2+

1 → 0+
gs 1454.5 576.5± 33.5 Discrete Sum

58Ni 2+
1 → 0+

gs 1454.5 589.5± 33.7 Integral

Table 4.5: The Coulomb excitation γ-ray yields extracted from the X08 data set.

Coulomb Excitation Yields

The Coulomb excitation peaks of interest and the corresponding γ-ray yields are summa-
rized in Tab. 4.5.

Isobaric Contamination

Using Eqs. 4.10 and 4.14 the 108Sn fraction in the beam during on/off runs could be deter-
mined

ROnOff = 0.597± 0.007 (4.16)

The extrapolation to the full experiment utilized the 108In Coulomb excitation transition at
237 keV. The sum of Coulomb excitation γ-rays in 108In during laser off was determined to
Iγ = 262.7±29.5. While the corresponding quantity collected over the whole experiment was
determined to Iγ = 1526.7± 100.3. The number of scattered particles into the DSSSD during
laser off was NOFF = 15563 and in total during the whole experiment NTOT = 220968. This
leads to an extrapolated Sn fraction of

R = 0.590± 0.027 (4.17)

Correlation Between Laser Power and Isobaric Contamination

A measure of the laser power was continuously stored in the data stream, as well as the
number of scattered particles into the DSSSD. During laser on/off periods, the number of
scattered Sn particles, NSn, should be related to the laser power, LP , applied in the primary
target cavity. NSn was estimated from the laser on/off runs

NON
Sn = NON

Sn+In −NOFF
In (4.18)

under the assumption NON
In = NOFF

In for consecutive on and off periods. In order to mini-
mize the influence of random fluctuations, the quantities were averaged over a time period
T . The sample correlation coefficient2, C(〈NSn〉T , 〈LP 〉T ), is the standard Pearson product-
moment correlation coefficient

C(〈NSn〉T , 〈LP 〉T ) =
n
∑n

i xiyi −
∑n

i xi
∑n

i yi√
n
∑n

i x
2
i − (

∑n
i xi)2

√
n
∑n

i y
2
i − (

∑n
i yi)2

, xi = 〈NSn〉T,i, yi = 〈LP 〉T,i

(4.19)
The time interval T was dictated by the correlation coefficient, Tab. 4.6 The relation between

2Correlation does not imply causality, which in this case can be inferred from the technical and physical
knowledge of the RILIS.
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T (min) C(〈NSn〉T , 〈LP 〉T )
10 0.86
20 0.87
30 0.85
40 0.90
50 0.86

Table 4.6: The correlation co-
efficient C for various time in-
tervals T . The optimal T is
marked with bold font.

〈NSn〉40 and 〈LP 〉40 is plotted in Fig. 4.17. For completeness, the sample correlation coeffi-
cient between the contaminant and the laser power, C(〈NIn〉T , 〈LP 〉T ), was found to be 0.38.
The value is low since there should be no correlation. The correlation between the laser
power and the number of Sn particles scattered into the DSSSD gives an alternative measure
on R. This we denote RC ,

RC = 0.58± 0.01 (4.20)

4.3.3 106Sn

The Coulomb excitation peaks of interest and the corresponding γ-ray yields are summa-
rized in Tab. 4.7.

Nucleus Transition Energy / keV Counts Integration Method
106Sn 2+

1 → 0+
gs 1206 132.5± 14.9 Discrete Sum

106Sn 2+
1 → 0+

gs 1206 139.8± 19.9 Integral
58Ni 2+

1 → 0+
gs 1454.5 206.5± 16.1 Discrete Sum

58Ni 2+
1 → 0+

gs 1454.5 204.5± 18.8 Integral

Table 4.7: The Coulomb excitation γ-ray yields extracted from the X06 data set.
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Isobaric Contamination

With the laser status (on or off) in the data stream it was possible to determine the isobaric
contamination in the offline analysis. Using Eqs. 4.10 and 4.14 the 106Sn fraction in the beam
during on/off runs could be determined

ROnOff = 0.235± 0.020 (4.21)

The extrapolation to the full experiment utilized the 106In Coulomb excitation transitions
at 368 keV, 147 keV, and 121 keV [47]. A random background subtraction was performed
in order to improve the peak to background and remove the decay component3 in the 121
keV and 147 kev peaks. The sum of Coulomb excitation γ-rays in 108In during laser off was
determined to Iγ = 274.7± 29.2. While the corresponding quantity collected over the whole
experiment was determined to Iγ = 1718.7 ± 101.3. The number of scattered particles into
the DSSSD during laser off was NOFF = 3606 and in total during the whole experiment
NTOT = 31872. This leads to an extrapolated Sn fraction of

R = 0.292± 0.042 (4.22)

This value in comparison with theROnOff value reflects the importance of doing an extrap-
olation to the full experiment.

It was not possible to correlate the laser power with the number of scattered 106Sn parti-
cles. This can indicate that the position of the laser beam has drifted during the experiment.
The laser power is only a measure of the injected ionization effect, not the real ionization
effect.

4.4 Coulomb Excitation Analysis with GOSIA2

GOSIA24 is a computer code specially developed for Coulomb excitation experiments us-
ing RIBs. It can calculate amongst other things Coulomb excitation probabilities P (θ) and
determine transition probabilities from experimental γ-ray yields.

4.4.1 Numerical Method

The aim of the calculation is to fit the unknown reduced transition matrix elements Mif ,
where B(Oλ) ∝ |Mif |2, to reproduce the experimental γ-ray yields. The program carries
out the (E, θ, φ) integration of the differential cross section and can take into account inter-
nal conversion coefficients, γ-ray transition branching ratios, and mixing ratios δ.

The Schrödinger equation to solve is:

i~
∂

∂t
|ψ(~r, t)〉 = (H0 + V (~r, t))|ψ(~r, t)〉 (4.23)

3coming from 108Sn → 108In decay.
4GOSIA2 and GOSIA are identical regarding handling of Coulomb excitation theory etc. The only difference

between the two codes is how the normalization is done.
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where V (~r, t) is electromagnetic monopole-multipole interaction between the projectile and
target, and |ψ(~r, t)〉 is the state vector of the nucleus that is excited. For example, the target
is excited by the multipole field of the projectile and vice versa. The monopole-monopole
interaction determines the time-dependent trajectory of particles. When the nuclei are in-
finitely separated the nucleus to be excited is described by a free-nucleus Hamiltonian H0

defined from
H0|Φn〉 = En|Φn〉 (4.24)

where |Φn〉 is the free-nucleus wave function. The index n indicates which internal nuclear
state the nucleus is in. The time-dependent nuclear state vector can be expressed in the
free-nucleus state vectors if the time-dependent expansion coefficients5 an(t) are introduced

ψ(~r, t)〉 =
∑

n

an(t)|Φn(~r)〉e−iEnt/~ (4.25)

which means that Eq. 4.23 can be written

ih
∑

n

dan(t)
dt

|Φn(~r)〉e−iEnt/~ =
∑

an(t)V (t)|Φ(~r)e−iEnt/~ (4.26)

The free nucleus wave functions are orthonormal, 〈Φk|Φn〉 = δkn, meaning that

dak(t)
dt

= − i
~
∑

n

an(t)〈Φk|V (t)|Φn〉e−it(Ek−En)/~ (4.27)

Following the standard theory of multipole expansion, the interaction potential V (t) can be
written

V (t) =
∞∑

λ=1

λ∑
µ=−λ

4πZe
2λ+ 1

(−1)−µSλµ(t)M(λ,−µ) (4.28)

where the Sλ now contains the motion of the potential and the multipole componentsM(λ, µ)
for the electric case is given by Eq. 2.42. Using the multipole expansion, Eq. 4.27 can be writ-
ten

dak(t)
dt

= −i4πZe
~

∑
n

an(t)eit/~(Ek−En)
∑
λµ

(−1)µSλµ(t)〈Φk|M(λ,−µ)|Φn〉 (4.29)

According to Ref. [23] the time-dependent Sλµ functions are convenient to express in a co-
ordinate system, for which in the center of mass frame, the z-axis is along the symmetry
axis of the incoming particle trajectory and the y-axis is in the trajectory plane such that the
incoming particle velocity component vy > 0. The x-axis is defined so that the coordinate
system is right-handed and Cartesian. The new parameters to describe the trajectories are ω
and ε. The parameter ε is the orbit eccentricity, and time t is now parameterized by ω

ε =
1

sin θcm
2

, t =
b

υi
(ε sinhω + ω) (4.30)

and the transformation to a Cartesian system is given by

x = 0, y = b(ε2 − 1)1/2 sinhω, z = b(coshω + ε), r = b(ε coshω + 1) (4.31)
5These are the same expansion coefficients related to P in Eq. 2.38
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The Sλµ(t) functions expressed in this system are called collision functions Qλµ(ε, ω). The
collision functions that GOSIA2 use are listed in Ref. [26]. Equation 4.29 expressed in the ε, ω
system are given by

dak

dω
= −i

∑
λµn

Qλµ(ε, ω)ζ(λµ)
kn 〈Φk||M(λ)||Φn〉 exp(iξkn(ε sinhω + ω))an(ω) (4.32)

where ζ(λµ)
kn are angular momentum coupling coefficients given in Ref. [26]. The collision

functions for electric and magnetic excitations are different. However, no explicit distinction
is made here. Equation 4.32 completely defines the excitation process. The excitation proba-
bility can be obtained by integrating this differential equation. Some further approximations
are implemented in GOSIA2. Equation 4.32 can be written as

dak

dω
=
∑
lmn

ζ
(lm)
kn M

(1)
kn flm(ω)an(ω) (4.33)

where flm(ω) = −iQlm(ω) exp[i(ε sinhω + ω)], and M
(1)
kn = 〈k||M(l)||n〉. Only couplings

between magnetic substates differing with δm = 0, 1 are made since the strength of the in-
teraction rapidly decrease with δm [23, 26], and magnetic excitations are neglected. The only
electric multipolarities allowed are λ = 1 − 6. The main GOSIA2 code approximation lies
in the treatment of the collision parameter flm(ω). The ω-dependence is removed, and the
flm(ω) function is replaced with a constant effective interaction strength qlm, extended over
a finite range Iω. The effective strength parameter q depend on ξ, ∆m, and weakly on ζ.
The q is approximated based on exact solutions of the excitation amplitudes for a two-level
system at discrete ξ points. Further details are found in Ref. [26].

During the minimization procedure, the Coulomb excitation cross section is integrated over
the scattering angles and target thickness6 only once. The integrated yield

Y (i→ f) =
∫ Ep,max

Ep,min

1
dEp/dx

dEp

∫ θp,max

θp,min

sin(θp)
∫
d2σ(i→ f)
dΩγdΩp

dφpdθp (4.34)

is given in a unit of (mb/srad) · (mg/cm2). The transition matrix elements are fitted to re-
produce the experimental yields for a constant particle energy and angle. Once the mini-
mization routine has converged (χ2 minimization with tolerance defined by the user) the
full integration is done once again.

4.4.2 Calculation of the B(E2) Values

The B(E2) value for the 58Ni target was taken from the BNL Evaluated Nuclear Structure
Data File (ENSDF)7.

For 58Ni : B(E2; 0gs → 2+
1 ) = 0.0705(18) e2b2 (4.35)

The static quadrupole moment of the first excited 2+ state in the 106,108,110Sn isotopes was
set to 0 eb. This is in line with the measurements on the stable even mass Sn-isotopes [48].

6The integration is done over projectile energy. Energy loss parameters are supplied to GOSIA by the user.
7Evaluated 26-sep 2006
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Input

The following must be given as input [26]

• The γ-ray yields Iγ for the transition i both target and projectile.

• The known B(E2) value from the target transition.

• The energy and scattering angle of the projectile to be used in evaluation of the point
yields. For instance the energy in center of target and the angle halfway between min-
imum and maximum detection.

• The positions of the 24 Ge-detectors.

• Internal conversion coefficients. The ones used in this licentiate thesis were taken
from [49]

• Energy loss parameters for 106,108,110Sn in 58Ni, calculated by SRIM [46]

• Projectile energy integration limits.

• Projectile scattering angle integration limits. Min: θ2p Max: θmax
LAB

• Experimental level schemes for target and projectile (from ENSDF), see Fig. 4.2

The numerical interpolation of targets thicker than 1 mg/cm2 can yield inconsistent re-
sults [50]. The target should be split into parts of 1 mg/cm2 thickness each. The integration
routine must be checked for consistency by changing the number of integration points. The
minimization routine converged for all three calculations.
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Chapter 5

Experimental Results

The reduced transition probabilities B(E2; 0+
gs → 2+

1 ) in the neutron-deficient 106,108,110Sn
isotopes were extracted using sub-barrier Coulomb excitation to the first excited 2+ state
in both the projectile Sn isotopes and the target 58Ni. The experiments were performed at
the RIB facility REX-ISOLDE located at CERN. The B(E2) values were calculated using the
coupled-channels computer code GOSIA2 with input from the discrete value γ-ray yields of
Tabs. 4.4, 4.5, and 4.7. TheB(E2) value for the 58Ni target was taken from the BNL Evaluated
Nuclear Structure Data File (ENSDF).

For 58Ni : B(E2; 0gs → 2+
1 ) = 0.0705(18) e2b2 (5.1)

The static quadrupole moment of the 2+
1 state in 106,108,110Sn was set to 0 eb in the analy-

sis. This is in line with the measured values in the stable even-mass Sn isotopes [48]. The
following results were obtained:

• In 110Sn: B(E2; 0+
gs → 2+

1 ) = (0.221± 0.022) e2b2 1

• In 108Sn: B(E2; 0+
gs → 2+) = (0.222± 0.019) e2b2

• In 106Sn: B(E2; 0+
gs → 2+) = (0.195± 0.039) e2b2

The above listed values are plotted in Figs. 5.1 and 5.1 together with adopted values for
heavier Sn-isotopes and two theoretical calculations [1]. See Ch. 6 for details regarding the
theoretical calculations.

1This is the result using GOSIA2. Using CLX gives 0.220 ± 0.022 which is the value stated in paper I of this
licentiate thesis.
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Figure 5.2: Known B(E2; ↑) values, given in e2b2, for the even-mass Sn-isotopes.
The hollow squares indicate the experimental values measured at REX-ISOLDE
that are presented in this licentiate thesis. The filled squares represent adopted val-
ues from [1]. The dashed line represents results of shell-model calculations using
100Sn as an inert core. The solid line represents the results of shell-model calculata-
tions using 90Zr as an inert core.
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Chapter 6

Discussion

Figure 6.1: Experimental low lying energy levels in the even-mass Sn isotopes
102−130Sn. The black lines represent, in order, the position of the first 2+, 4+, and
6+ where present. Remaining low-lying levels are gray-shaded and included for
completeness.

The nearly constant energy spacings between the first 2+ state and 0+ ground state in
102−130Sn, see Fig. 6.1, are explained within the generalized seniority model [51]. In general,
with the addition or removal of protons, the seniority model would no longer be valid for
the present case. Instead the onset of deformation driving forces start to dominate which
can drastically change the level structure [52, 53].

59
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Excited states in 132Sn have been known since long via β−-decay studies of 132In produced
in fission [54]. The 2+

1 state in 132Sn is located at 4.04 MeV. The high excitation energy implies
a shell closure at N = 82. This is strengthened by the experimental and theoretical B(E2)
values in the vicinity of 132Sn, see Fig. 5.1.

The B(E2) value between the 2+
1 state and the ground state in 114Sn was re-measured re-

cently with sub-barrier Coulomb excitation at GSI. It remains shifted to a higher value while
the uncertainty was reduced to a level comparable with the other stable Sn isotopes [55]. The
shift in the adopted B(E2) values when moving from 114Sn to 116Sn could indicate a sub-
shell closure at neutron number N = 64. However, a shell-closure is traditionally detected
in nucleon separation energy systematics. In Fig. 6.2 the two-neutron separation energy is
plotted for the even-mass Sn isotopes. The changes in the two-neutron separation energy is
closely related with pairing and the superfluid phase in the nuclear condensate [56]. With-
out pairing, equivalently destroyed seniority, the two-neutron separation energy outside the
closed 100Sn core would follow a step function with cusps at neutron numbers correspond-
ing to the single particle orbits. The sub-shell closure indicated in the difference between
the experimental B(E2) values for 114Sn and 116Sn is not found in Fig. 6.2. The trend of

Figure 6.2: Experimental two-neutron separation energies S(2n) for the even-
mass Sn isotopes [44]. A sharp drop is observed after N = 82, indicating that a
shell-closure is formed at this neutron number

increasing energies of the first 2+ state and the first 4+ state towards 100Sn [57] indicate a
good shell closure at N = Z = 50. However, the experimental B(E2) values , see Fig. 5.1,
indicate a larger than predicted collectivity in the neutron deficient Sn isotopes, which in
turn points towards a weakening of the shell closure. The currently available experimental
B(E2; 0gs → 2+

1 ) values in 106,108,110Sn [1, 58, 59] are consistent with each other. Further-
more, they are not reproduced in any shell-model calculation. A relativistic quasi-particle
random phase calculation[60] does reproduce the trend of increasing B(E2) values towards
the proton drip-line. However, it does not agree with the experimental B(E2) data on the
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neutron rich side. The energies of the first 2+ state and the first 4+ state in the N = Z + 2
nucleus 110Xe was recently measured [61]. It was concluded there that the trend of increas-
ing energy of the first 2+ state and the first 4+ state with decreasing neutron number was
broken as the N = 50 shell gap was approached and that this could imply a weakening of
the N = Z = 50 gap [61].

The 100Sn core is not LS-closed since the N = Z = 50 shell gap emerges from the splitting
of 1g orbit due to the spin-orbit force, Fig. 2.2. Quadrupole excitations are therefore allowed
across the 1g9/2 − 1g7/2 shell gap1. An E2 excitation is not allowed from an LS-closed core
such as 16O unless it takes place to the second major oscillator shell above the core. There
are only two self-conjugate non-LS closed cores; 100Sn and 56Ni.

Neutrons and protons occupy the same orbits in N = Z nuclei. It is shown in [62] that
the interaction between nucleons in spin-orbit partner orbits ` ± 1/2 2 interact in a certain
way. The `↑ - `↓ interaction is strongly attractive especially between neutrons and protons.
The `↑-`↑ and `↓-`↓ interaction is repulsive. This tensor force could strongly modify the effec-
tive single particle energies [62]. The spin-orbit splitting between the neutron 2p3/2 − 2p1/2

was recently investigated experimentally [63]. The single particle energies of 47Ar (Z=18)
were obtained via transfer reactions. The location of the neutron 2p3/2 and 2p1/2 orbits in
49Ca (Z=20) were 875(130)keV larger. This was suggested [63] to originate in the weakened
spin-orbit interaction due to the removal of two protons from 1d3/2 and 2s1/2. The combined
effect caused a weakening of the N = 28 shell closure [63].

The variation of the spin-orbit force with nucleon number and relative spin orientation of
the particles is of the same origin as the neutron-proton correlations discussed in [64, 52].
With analogous reasoning the proton 1g9/2 orbit could become less bound as the number of
neutrons in the 1g7/2 orbit decrease as the proton drip line is approached. This would favor
the probability for proton excitations across the Z = 50 shell gap, which would increase
the B(E2; 0gs → 2+

1 ) values in neutron-deficient Sn isotopes towards the proton drip line.
A seniority truncated shell-model calculation3 using 90Zr as an inert core clearly shows the
increase in transition probability as proton excitations across the Z = 50 are included [1], see
Fig. 6.4. The proton effective charge was set to 1.5 e and the neutron effective charge was to
0.5 e in this calculation. The model space comprised the neutron 1g7/22d3s1h11/2 orbits and
the proton 1g2d3s orbits.

The B(E2; 6+
1 → 4+

1 ) in the even-mass 102−110Sn isotopes are known from experiment [65,
66, 67] and summarized in Tab. 6.1. The consensus amongst published microscopic calcula-
tions with G-matrix interactions [68] is that an effective neutron charge of 2.0 e is required
in order to reproduce the experimental values. A large effective charge clearly indicates the
need for an expanded valence space within shell-model calculation.

1The parity of the Eλ operator is (−1)λ

2`↑ ≡ ` + 1/2 and `↓ ≡ `− 1/2
3By imposing seniority the B(E2) trend across the Sn isotopic chain will automatically be of symmetric

parabolic character
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Isotope E(6+
1 ) / MeV Eγ / MeV B(E2; 6+

1 → 4+
1 ) / e2b2

102Sna 2.02 0.05 1.16(50) · 10−2

104Snb 2.26 0.32 1.13(17) · 10−2

106Snc 2.32 0.30 7.4(1.3) · 10−3

108Sn 2.36 0.25 6.8(4) · 10−3

110Sn 2.48 0.28 5.5(4) · 10−3

Table 6.1: Experimental B(E2) values for higher lying transitions in 102−110Sn.
The third column contains the transition energy.

aRef. [67]
bRef. [66]
cRef. [65]106−110Sn

6.1 Shell-Model Calculations in the Sn Isotopes

For the calculations presented here, the size of the valence space is restricted to the neutron
orbits between N = 50 − 82; 1g7/22d5/23s1/22d3/21h11/2. The restriction is due to current
computational limitations. The neutron 1g7/2 − 2d5/2 energy difference was recently mea-
sured [69] in 101Sn to 171.7(6) keV. The light Sn isotopes have been investigated theoretically
in e.g. [70, 71, 1] and references therein. Two sets of single particle energies are considered
here, see Fig. 6.3. The calculation from [1] is based on 100Sn as inert core and use SPE(1).It

Figure 6.3: Neutron single particle energies (SPE) used in the shell-model calcula-
tions presented here. SPE(1) was used in [1], while the experimentally determined
1g7/2 − 2d5/2 is included in SPE(2).

successfully reproduces the energy of the 2+
1 states in the even-mass 102−130Sn isotopes, see

Tab 6.2. The CD-Bonn interaction was renormalized using the G-matrix with the oscilla-
tor parameter ~ω = 45A−1/3 − 25A − 2/3 = 8.5 MeV [14]. The effective interaction was
constructed using third order many body perturbation theory allowing for excitations up
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to 2~ω, see Sec. 2.2. The calculations were carried out using computer codes developed by
Hjorth-Jensen [14]. With an effective neutron charge set to eeff = 1.0 e the experimental
B(E2; 0gs → 2+

1 ) values in 116−130Sn are reproduced, Fig. 5.1. The calculation fails to repro-
duce the experimentalB(E2) values for isotopes withN < 66. Using single particle energies
denoted SPE(2) in Fig. 6.3 instead of single particle energies denoted SPE(1) in the same fig-
ure gave negligible differences.

A second set of shell-model calculation was carried out here. Compared to the prior cal-
culation, they now allowed for 5~ω excitations, but in all other respects they were identical.
However, apart from the CD-Bonn interaction a calculation based on the N3LO interaction
was also carried out. The calculated B(E2) values differ slightly from [1], see Fig. 6.4. The

Sn Mass Number
100 110 120 130

)2 b2
)  

(e
1+

 2
→ 1+

B(
E2

;0

0

0.05

0.1

0.15
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0.3

0.35
Sn-core (CD-Bonn)100Theory: 

Zr-core  (CD-Bonn)90Theory: 
ωhSn-core (CD-Bonn) 5100Theory: 

ωhSn-core (N3LO) 5100Theory: 

Figure 6.4: A summary of the B(E2) values. The calculation based on 90Zr core
was seniority truncated. The remaining calculations differ only in number of ex-
citations allowed for in the perturbative scheme, 2~ω or 5~ω. The interaction was
either CD-Bonn or N3LO. See text for further details.

difference can possibly be attributed to the range of allowed excitations in the perturbative
scheme. It is interesting to note that the inclusion of higher order excitations gives a result
that start to deviate slightly from a good seniority picture. The resulting two-body matrix
elements using the N3LO interaction are close to identical to the ones obtained from CD-
Bonn. See App. A for details regarding the 5~ω calculations. The energy level-structure in
102−130Sn calculated with N3LO is compared with the CD-Bonn results in Fig. 6.5. The theo-
retical energy levels from N3LO and CD-Bonn (using both 2~ω and 5~ω) are compared with
the experimental results in Tab. 6.2. A theoretical energy spectrum for 108Sn including higher
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lying levels is compared with the corresponding experimental levels in Fig. 6.6.

Figure 6.5: black - CD-Bonn , grey - N3LO. The lines represent, in order, the
position of the first 2+, 4+, and 6+ where present. Many more levels are obtained
from the diagonalization, however they are left out in this figure in order to make
the CD-Bonn/N3LO comparison clear. See text for details.

6.2 Outlook

The experimental B(E2) values in the neutron-deficient isotopes might be reproduced in an
extended shell-model calculation with the inclusion of the neutron and the proton 1g9/2 or-
bit. Without the aforementioned seniority truncation, the model space dimension will grow
combinatorially larger than the present-day computational limit of a ∼ 109 model space
dimension. The model space dimensions for the calculations presented here are shown in
Fig. 6.7. The dimensions of the extended model space can be reduced by freezing a few parti-
cles to the 1g9/2 orbit. Nevertheless, the calculations must be carried out on a computational
cluster. A parallel shell-model code that can handle both proton and neutron excitations is
under production by the Oslo group [72].

Measurements of the B(E2) values in 100,102,104Cd are planned for 2008. The Cd isotopes
have two protons less than the 100Sn core. Results from shell-model calculations of neutron-
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Figure 6.6: Calculated energy levels in 108Sn compared with the experimental lev-
els. The calculation is based on the CD-Bonn interaction with 5~ω excitations. The
first excited 2+ and 4+ states are well reproduced. The higher lying theoretical level
structure is more difficult to interpret.

deficient even-mass Cd isotopes show that the neutrons and protons are weakly coupled in
these nuclei. This implies that one can expect the neutron degree of freedom to be similar to
the one in the even-mass tin isotopes [72].

It is also of interest to measure the B(E2) values in 104Sn and the even lighter isotope 102Sn
and ultimately 100Sn. These experiments are currently limited due to the relatively low beam
intensities.



66 Discussion

Experiment CD-Bonn (5~ω) CD-Bonn (2~ω) N3LO (5~ω)
Isotope E(2+

1 ) E(4+
1 ) E(2+

1 ) E(4+
1 ) E(2+

1 ) E(2+
1 ) E(4+

1 )
102Sn 1.47 1.97 1.54 1.98 1.65 1.54 1.97
104Sn 1.26 1.94 1.28 1.94 1.34 1.27 1.94
106Sn 1.21 2.02 1.18 2.08 1.23 1.16 2.06
108Sn 1.21 2.11 1.22 2.19 1.24 1.20 2.18
110Sn 1.21 2.20 1.19 2.16 1.26 1.17 2.14
112Sn 1.26 2.25 1.18 2.22 1.24 1.16 2.21
114Sn 1.30 2.19 1.16 2.27 1.21 1.13 2.24
116Sn 1.30 2.39 1.08 2.09 1.14 1.05 2.03
118Sn 1.23 2.28 1.01 2.00 1.07 0.98 1.04
120Sn 1.17 2.19 1.00 1.98 1.04 0.96 1.91
122Sn 1.14 2.14 1.02 1.97 1.08 0.99 1.91
124Sn 1.13 2.10 1.08 1.98 1.12 1.05 1.92
126Sn 1.14 2.05 1.18 2.05 1.21 1.16 2.01
128Sn 1.17 2.00 1.25 1.93 1.23 1.22 1.92
130Sn 1.22 2.00 1.23 1.84 1.19 1.20 1.81

Table 6.2: Experimental and theoretical energies of the 2+
1 and 4+

1 levels in the
even-mass Sn isotopes. The theoretical results are based on two different nuclear
interactions, CD-Bonn or N3LO. The energy truncation in the G-matrix perturba-
tion is given within parenthesis.

Even-Mass Sn Isotope
100 110 120 130

Ne
ut

ro
n 

M
od

el
 S

pa
ce

 D
im

en
sio

n

510

610

710

Figure 6.7: The neutron 1g7/22d5/23s1/21h11/2 model space dimension in shell-model calculations.
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Appendix A

Effective Two-Body Matrix Elements

Neutron Two-Body Matrix Elements (TBME) given in Tabs. A.1 and A.4 are of the form

〈na`ajanb`bjb|Veff|nc`cjcnd`djd〉JT (A.1)

The two rightmost columns give the value in MeV for the two different effective nucleon-
nucleon interactions, Veff, of relevance in the present case. The TBME were used as input in
the shell-model calculations described in Ch. 6
Explanation of notation:

• n - radial quantum number

• ` - orbital angular momentum

• j - total angular momentum of the nucleon orbit

• J - total coupled angular momentum of the interaction

• T - total isopin of the interaction
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The following input was used when renormalizing the free nucleon-nucleon interaction
for use with a 100Sn core shell-model calculation.

G-matrix calculation

• VNN : N3LO or CD-Bonn

• The oscillator energy ~ω = 8.5 MeV1

• Number of nucleons, A = 100. The G-matrix result has a weak dependence on A. The
problem is connected with the spurious states originating in center of mass motion
coming from translational non-invariance in the one-body field ui in the residual in-
teraction V . The A-dependence in the G−matrix comes from the ki·kj

mA center of mass
term. With A =100, this term is negligible.

• A square Pauli operator QF [14]

• A Q-space truncated at `LAB = 7 and nLAB = 3, leading to 72 orbits included up to
N = 7.

• Include nucleon-nucleon interaction data for partial waves 0 ≤ ` ≤ 10

• 10 G−matrix starting energies between -5.0 and -150.0 MeV

Perturbation Expansion:

• Third order many body perturbation theory using open-diagrams.

• Allowing intermediate state excitation of maximum 5 ~ω

• Degenerate valence energies in the neutron (1g7/22d3s1h11/2) model space set to −10.0
MeV

• Starting energy of −20.0 MeV

The P space defined to include the neutron orbits 1g7/22d3s1h11/2. In order to avoid poles2

in a perturbative expansion of a multi-shell (non-LS closed) P space the 1g7/2 and 1h11/2

orbits were altered to belong to the same major oscillator shell as the 2d3s orbits.

1Using parameterization ~ω = 45 ·A−2/3 − 25A1/3

2See p.219 in Ref. [14]. Result in program termination



na `a ja nb `b jb nc `c jc nd `d jd 2T 2J N3lO CD-Bonn
0 4 7 0 4 7 0 4 7 0 4 7 2 0 -1.294649 -1.292410
0 4 7 0 4 7 1 2 5 1 2 5 2 0 -0.630048 -0.636278
0 4 7 0 4 7 1 2 3 1 2 3 2 0 -0.652301 -0.648606
0 4 7 0 4 7 2 0 1 2 0 1 2 0 -0.308742 -0.311734
0 4 7 0 4 7 0 5 11 0 5 11 2 0 1.290802 1.321735
1 2 5 1 2 5 1 2 5 1 2 5 2 0 -0.886330 -0.870426
1 2 5 1 2 5 1 2 3 1 2 3 2 0 -1.062040 -1.065016
1 2 5 1 2 5 2 0 1 2 0 1 2 0 -0.453857 -0.442361
1 2 5 1 2 5 0 5 11 0 5 11 2 0 0.875475 0.879563
1 2 3 1 2 3 1 2 3 1 2 3 2 0 -0.445816 -0.432020
1 2 3 1 2 3 2 0 1 2 0 1 2 0 -0.378740 -0.370515
1 2 3 1 2 3 0 5 11 0 5 11 2 0 0.602774 0.609465
2 0 1 2 0 1 2 0 1 2 0 1 2 0 -0.916551 -0.913477
2 0 1 2 0 1 0 5 11 0 5 11 2 0 0.385177 0.387503
0 5 11 0 5 11 0 5 11 0 5 11 2 0 -1.306377 -1.305552
0 4 7 1 2 5 0 4 7 1 2 5 2 2 -0.185566 -0.153967
0 4 7 1 2 5 1 2 5 1 2 3 2 2 -0.021650 -0.021458
0 4 7 1 2 5 1 2 3 2 0 1 2 2 -0.112921 -0.108018
1 2 5 1 2 3 1 2 5 1 2 3 2 2 -0.017921 0.000909
1 2 5 1 2 3 1 2 3 2 0 1 2 2 -0.021708 -0.021128
1 2 3 2 0 1 1 2 3 2 0 1 2 2 0.060759 0.075675
0 4 7 0 4 7 0 4 7 0 4 7 2 4 -0.330022 -0.325755
0 4 7 0 4 7 0 4 7 1 2 5 2 4 -0.034693 -0.026919
0 4 7 0 4 7 0 4 7 1 2 3 2 4 -0.353656 -0.354116
0 4 7 0 4 7 1 2 5 1 2 5 2 4 -0.103557 -0.106056
0 4 7 0 4 7 1 2 5 1 2 3 2 4 -0.197251 -0.197269
0 4 7 0 4 7 1 2 5 2 0 1 2 4 -0.205870 -0.207795
0 4 7 0 4 7 1 2 3 1 2 3 2 4 -0.242040 -0.239232
0 4 7 0 4 7 1 2 3 2 0 1 2 4 0.127824 0.129585
0 4 7 0 4 7 0 5 11 0 5 11 2 4 0.250180 0.261629
0 4 7 1 2 5 0 4 7 1 2 5 2 4 0.015173 0.032952
0 4 7 1 2 5 0 4 7 1 2 3 2 4 0.267724 0.264671
0 4 7 1 2 5 1 2 5 1 2 5 2 4 0.077200 0.077180
0 4 7 1 2 5 1 2 5 1 2 3 2 4 0.097109 0.095398
0 4 7 1 2 5 1 2 5 2 0 1 2 4 0.086970 0.088653
0 4 7 1 2 5 1 2 3 1 2 3 2 4 0.025179 0.025656
0 4 7 1 2 5 1 2 3 2 0 1 2 4 -0.098159 -0.095201
0 4 7 1 2 5 0 5 11 0 5 11 2 4 -0.282206 -0.283253
0 4 7 1 2 3 0 4 7 1 2 3 2 4 -0.443691 -0.441678
0 4 7 1 2 3 1 2 5 1 2 5 2 4 -0.183420 -0.181415
0 4 7 1 2 3 1 2 5 1 2 3 2 4 -0.193863 -0.194449
0 4 7 1 2 3 1 2 5 2 0 1 2 4 -0.246399 -0.245654
0 4 7 1 2 3 1 2 3 1 2 3 2 4 -0.212077 -0.211698
0 4 7 1 2 3 1 2 3 2 0 1 2 4 0.296783 0.293865
0 4 7 1 2 3 0 5 11 0 5 11 2 4 0.401225 0.408985

Table A.1: Two-Body Matrix Elements (TBME) given in MeV. See text for details



na `a ja nb `b jb nc `c jc nd `d jd 2T 2J N3lO CD-Bonn
1 2 5 1 2 5 1 2 5 1 2 5 2 4 -0.320944 -0.316008
1 2 5 1 2 5 1 2 5 1 2 3 2 4 -0.120252 -0.126757
1 2 5 1 2 5 1 2 5 2 0 1 2 4 -0.350513 -0.348293
1 2 5 1 2 5 1 2 3 1 2 3 2 4 -0.233662 -0.237051
1 2 5 1 2 5 1 2 3 2 0 1 2 4 0.286912 0.285653
1 2 5 1 2 5 0 5 11 0 5 11 2 4 0.410746 0.410922
1 2 5 1 2 3 1 2 5 1 2 3 2 4 -0.076793 -0.065589
1 2 5 1 2 3 1 2 5 2 0 1 2 4 -0.157982 -0.154730
1 2 5 1 2 3 1 2 3 1 2 3 2 4 -0.272372 -0.274532
1 2 5 1 2 3 1 2 3 2 0 1 2 4 0.273993 0.272151
1 2 5 1 2 3 0 5 11 0 5 11 2 4 0.029695 0.032622
1 2 5 2 0 1 1 2 5 2 0 1 2 4 -0.524481 -0.519514
1 2 5 2 0 1 1 2 3 1 2 3 2 4 -0.272544 -0.268868
1 2 5 2 0 1 1 2 3 2 0 1 2 4 0.556202 0.561456
1 2 5 2 0 1 0 5 11 0 5 11 2 4 0.226482 0.228937
1 2 3 1 2 3 1 2 3 1 2 3 2 4 -0.007621 -0.003363
1 2 3 1 2 3 1 2 3 2 0 1 2 4 0.159747 0.159501
1 2 3 1 2 3 0 5 11 0 5 11 2 4 0.103165 0.105564
1 2 3 2 0 1 1 2 3 2 0 1 2 4 -0.227764 -0.217922
1 2 3 2 0 1 0 5 11 0 5 11 2 4 -0.228625 -0.230979
0 5 11 0 5 11 0 5 11 0 5 11 2 4 -0.737822 -0.727424
0 4 7 1 2 5 0 4 7 1 2 5 2 6 0.129725 0.137180
0 4 7 1 2 5 0 4 7 1 2 3 2 6 0.087133 0.089538
0 4 7 1 2 5 0 4 7 2 0 1 2 6 -0.134365 -0.127879
0 4 7 1 2 5 1 2 5 1 2 3 2 6 -0.033893 -0.033497
0 4 7 1 2 5 1 2 5 2 0 1 2 6 -0.038422 -0.038148
0 4 7 1 2 3 0 4 7 1 2 3 2 6 0.149367 0.150591
0 4 7 1 2 3 0 4 7 2 0 1 2 6 -0.129980 -0.121497
0 4 7 1 2 3 1 2 5 1 2 3 2 6 -0.010662 -0.010795
0 4 7 1 2 3 1 2 5 2 0 1 2 6 -0.004603 -0.004771
0 4 7 2 0 1 0 4 7 2 0 1 2 6 0.154456 0.163704
0 4 7 2 0 1 1 2 5 1 2 3 2 6 -0.000734 0.000084
0 4 7 2 0 1 1 2 5 2 0 1 2 6 0.025881 0.026636
1 2 5 1 2 3 1 2 5 1 2 3 2 6 0.075141 0.083941
1 2 5 1 2 3 1 2 5 2 0 1 2 6 -0.049404 -0.051015
1 2 5 2 0 1 1 2 5 2 0 1 2 6 -0.020682 -0.008809
0 4 7 0 4 7 0 4 7 0 4 7 2 8 0.099841 0.095694
0 4 7 0 4 7 0 4 7 1 2 5 2 8 0.096596 0.099669
0 4 7 0 4 7 0 4 7 1 2 3 2 8 -0.248174 -0.243946
0 4 7 0 4 7 0 4 7 2 0 1 2 8 0.105993 0.106312
0 4 7 0 4 7 1 2 5 1 2 5 2 8 -0.077049 -0.078122
0 4 7 0 4 7 1 2 5 1 2 3 2 8 -0.219163 -0.220008
0 4 7 0 4 7 0 5 11 0 5 11 2 8 0.147878 0.154518
0 4 7 1 2 5 0 4 7 1 2 5 2 8 0.114006 0.117002
0 4 7 1 2 5 0 4 7 1 2 3 2 8 0.178078 0.180120

Table A.2: Two-Body Matrix Elements (TBME) given in MeV. See text for details



na `a ja nb `b jb nc `c jc nd `d jd 2T 2J N3lO CD-Bonn
0 4 7 1 2 5 0 4 7 2 0 1 2 8 -0.303928 -0.297828
0 4 7 1 2 5 1 2 5 1 2 5 2 8 0.079388 0.078683
0 4 7 1 2 5 1 2 5 1 2 3 2 8 0.188972 0.186851
0 4 7 1 2 5 0 5 11 0 5 11 2 8 -0.201159 -0.203205
0 4 7 1 2 3 0 4 7 1 2 3 2 8 0.069284 0.066520
0 4 7 1 2 3 0 4 7 2 0 1 2 8 0.254114 0.252030
0 4 7 1 2 3 1 2 5 1 2 5 2 8 -0.060081 -0.058122
0 4 7 1 2 3 1 2 5 1 2 3 2 8 -0.185335 -0.183183
0 4 7 1 2 3 0 5 11 0 5 11 2 8 0.143230 0.146483
0 4 7 2 0 1 0 4 7 2 0 1 2 8 -0.086085 -0.085442
0 4 7 2 0 1 1 2 5 1 2 5 2 8 0.119102 0.115660
0 4 7 2 0 1 1 2 5 1 2 3 2 8 0.244951 0.241241
0 4 7 2 0 1 0 5 11 0 5 11 2 8 -0.200677 -0.202878
1 2 5 1 2 5 1 2 5 1 2 5 2 8 -0.060738 -0.058723
1 2 5 1 2 5 1 2 5 1 2 3 2 8 -0.396255 -0.399192
1 2 5 1 2 5 0 5 11 0 5 11 2 8 0.205420 0.205277
1 2 5 1 2 3 1 2 5 1 2 3 2 8 -0.583800 -0.581503
1 2 5 1 2 3 0 5 11 0 5 11 2 8 0.196102 0.198948
0 5 11 0 5 11 0 5 11 0 5 11 2 8 -0.240486 -0.240174
0 4 7 1 2 5 0 4 7 1 2 5 2 10 0.190943 0.190990
0 4 7 1 2 5 0 4 7 1 2 3 2 10 -0.013754 -0.009450
0 4 7 1 2 3 0 4 7 1 2 3 2 10 0.208427 0.213010
0 4 7 0 4 7 0 4 7 0 4 7 2 12 0.259528 0.254002
0 4 7 0 4 7 0 4 7 1 2 5 2 12 0.187409 0.186700
0 4 7 0 4 7 0 5 11 0 5 11 2 12 0.100030 0.104087
0 4 7 1 2 5 0 4 7 1 2 5 2 12 -0.370617 -0.364030
0 4 7 1 2 5 0 5 11 0 5 11 2 12 -0.267955 -0.270407
0 5 11 0 5 11 0 5 11 0 5 11 2 12 -0.066066 -0.065383
0 5 11 0 5 11 0 5 11 0 5 11 2 16 0.017921 0.019717
0 5 11 0 5 11 0 5 11 0 5 11 2 20 0.077298 0.079112
0 4 7 0 5 11 0 4 7 0 5 11 2 4 -0.793741 -0.760910
0 4 7 0 5 11 0 4 7 0 5 11 2 6 -0.368338 -0.346760
0 4 7 0 5 11 1 2 5 0 5 11 2 6 0.228142 0.227580
1 2 5 0 5 11 1 2 5 0 5 11 2 6 -0.711804 -0.711073
0 4 7 0 5 11 0 4 7 0 5 11 2 8 -0.012296 -0.002379
0 4 7 0 5 11 1 2 5 0 5 11 2 8 0.084006 0.079690
0 4 7 0 5 11 1 2 3 0 5 11 2 8 -0.145208 -0.141453
1 2 5 0 5 11 1 2 5 0 5 11 2 8 -0.022759 -0.021721
1 2 5 0 5 11 1 2 3 0 5 11 2 8 -0.181359 -0.175836
1 2 3 0 5 11 1 2 3 0 5 11 2 8 -0.139598 -0.131063
0 4 7 0 5 11 0 4 7 0 5 11 2 10 -0.075806 -0.072983
0 4 7 0 5 11 1 2 5 0 5 11 2 10 0.083312 0.087069
0 4 7 0 5 11 1 2 3 0 5 11 2 10 -0.225635 -0.221966
0 4 7 0 5 11 2 0 1 0 5 11 2 10 0.125697 0.126275
1 2 5 0 5 11 1 2 5 0 5 11 2 10 -0.121646 -0.124839

Table A.3: Two-Body Matrix Elements (TBME) given in MeV. See text for details



na `a ja nb `b jb nc `c jc nd `d jd 2T 2J N3lO CD-Bonn
1 2 5 0 5 11 1 2 3 0 5 11 2 10 0.166938 0.167883
1 2 5 0 5 11 2 0 1 0 5 11 2 10 -0.357959 -0.356202
1 2 3 0 5 11 1 2 3 0 5 11 2 10 0.014901 0.013873
1 2 3 0 5 11 2 0 1 0 5 11 2 10 0.298324 0.294660
2 0 1 0 5 11 2 0 1 0 5 11 2 10 -0.196224 -0.198450
0 4 7 0 5 11 0 4 7 0 5 11 2 12 0.117378 0.123891
0 4 7 0 5 11 1 2 5 0 5 11 2 12 0.065722 0.064216
0 4 7 0 5 11 1 2 3 0 5 11 2 12 -0.097299 -0.092825
0 4 7 0 5 11 2 0 1 0 5 11 2 12 0.013522 0.013378
1 2 5 0 5 11 1 2 5 0 5 11 2 12 0.164113 0.163946
1 2 5 0 5 11 1 2 3 0 5 11 2 12 -0.009808 -0.006785
1 2 5 0 5 11 2 0 1 0 5 11 2 12 -0.168174 -0.162448
1 2 3 0 5 11 1 2 3 0 5 11 2 12 0.160972 0.159622
1 2 3 0 5 11 2 0 1 0 5 11 2 12 -0.087185 -0.081944
2 0 1 0 5 11 2 0 1 0 5 11 2 12 0.109364 0.112287
0 4 7 0 5 11 0 4 7 0 5 11 2 14 -0.109254 -0.112465
0 4 7 0 5 11 1 2 5 0 5 11 2 14 0.112161 0.114372
0 4 7 0 5 11 1 2 3 0 5 11 2 14 -0.340429 -0.338570
1 2 5 0 5 11 1 2 5 0 5 11 2 14 0.000075 -0.001066
1 2 5 0 5 11 1 2 3 0 5 11 2 14 0.335393 0.334817
1 2 3 0 5 11 1 2 3 0 5 11 2 14 -0.403368 -0.401296
0 4 7 0 5 11 0 4 7 0 5 11 2 16 0.167402 0.169920
0 4 7 0 5 11 1 2 5 0 5 11 2 16 0.054687 0.056191
1 2 5 0 5 11 1 2 5 0 5 11 2 16 0.162742 0.168935
0 4 7 0 5 11 0 4 7 0 5 11 2 18 -0.882250 -0.876815

Table A.4: Two-Body Matrix Elements (TBME) given in MeV. See text for details
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The first excited 2� state of the unstable isotope 110Sn has been studied in safe Coulomb excitation at
2:82 MeV=u using the MINIBALL array at the REX-ISOLDE post accelerator at CERN. This is the first
measurement of the reduced transition probability of this state using this method for a neutron deficient Sn
isotope. The strength of the approach lies in the excellent peak-to-background ratio that is achieved. The
extracted reduced transition probability, B�E2 : 0� ! 2�� � 0:220� 0:022e2b2, strengthens the obser-
vation of the evolution of the B�E2� values of neutron deficient Sn isotopes that was observed recently in
intermediate-energy Coulomb excitation of 108Sn. It implies that the trend of these reduced transition
probabilities in the even-even Sn isotopes is not symmetric with respect to the midshell mass number
A � 116 as 100Sn is approached.

DOI: 10.1103/PhysRevLett.98.172501 PACS numbers: 23.20.Js, 21.60.Cs, 25.70.De, 27.60.+j

Substantial interest has recently arisen in the shell
structure of atomic nuclei with only a few nucleons out-
side the double shell closure at 100Sn. As an example, a
series of experiments aiming at isotopes in this region has
been carried out using fusion-evaporation reactions in
the recent past [1]. With the advent of radioactive ion
beams these studies are now taken further using sub-barrier
and intermediate-energy Coulomb excitation [2,3]. In this
Letter we present the only sub-barrier or ‘‘safe’’ Coulomb
excitation experiment in this region to date. The study of
the reduced transition probability—the B�E2�—of the
first excited 2� state in an even-even nucleus gives a direct
handle on the collectivity of that state. It can thus be used to
measure systematic changes in the strengths of shell gaps.
The general motivation for this kind of study goes back to
our incomplete knowledge of the mechanisms that govern
shell formation and their implications for the structure of

nuclei far from stability. It is well known that a strong spin-
orbit force was introduced into the nuclear shell-model on
Fermi’s suggestion by Goeppert Mayer [4] and indepen-
dently by Haxel, Jensen, and Suess [4] to explain the
observed shell gaps. However, these papers were substan-
tially predated by the consideration of a nuclear spin-orbit
force by Inglis [5] who noted that the relativistic Thomas
term which arises as a consequence of the noncommutation
of Lorentz transformations should act also in atomic nu-
clei. This term, given by the vector product of the velocity
and acceleration of the bound nucleon, gives rise to nuclear
LS coupling, a result which can be derived from the Dirac
equation [6]. In this picture, the acceleration is propor-
tional to the derivative of the potential experienced by the
bound particle, a notion still used in mean-field approaches
today. As a consequence, the splitting of the shell gaps
becomes density dependent and may change with the
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distribution of nucleons in the nucleus. Thus, already on a
more fundamental level, changes in shell-gap structure
could occur for exotic neutron-proton combinations. It
should be added that the size of the Thomas term appeared
too small to account for the splitting suggested by
Goeppert Mayer and in a later paper Inglis conjectured
an addition to spin-orbit partner splitting from meson
exchange [7]. In a microscopic description of residual
forces in the shell model, other considerations also become
important. In particular, close to a self-conjugate shell
closure correlations will arise between neutrons and pro-
tons that occupy orbits with the same quantum numbers.
An example of this is so-called neutron-proton pairing [8].
Furthermore, as has been discussed by Otsuka et al. [9] one
expects a particularly strong interaction between neutrons
and protons occupying spin-orbit partner orbits. In this
context, the so-called monopole drift of single-particle
energies with respect to mass number becomes important
[10]. A main motivation for a study of shell evolution is
thus to see if the shell closures that are strong at stability
remain so far from stability as the distribution of nucleons
changes. This question is particularly interesting in the
self-conjugate case. Coulomb excitation of radioactive
beams at safe energies is a new and unique tool to address
this topic.

The radioactive 110Sn beam used in the experiment was
produced by bombarding a 27 g=cm2 LaCx target at
ISOLDE, CERN, with a 1.4 GeV proton beam from the
PS booster. The Sn atoms, after having diffused through the
heated target material and effused into an ionization cavity,
were ionized by a three-step laser ionization scheme
whereafter the beam was extracted and separated in the
general purpose separator of the facility. This method
provides a high degree of mass and element selectivity.
Samples were collected with the laser beams switched on
and off to identify the components of the beam. Collection
of 110Sn is possible as its half-life is 4.1 h. The � rays
emitted following � decay in the sample were measured
offline using �-spectroscopic methods. It was concluded
that Sn ions were implanted only when the laser beams
were switched on. Furthermore, surface ionized 110In was
identified as the main beam contaminant. A yield of 2:5�
108 atoms=�C of 110Sn was established from this mea-
surement. The yield of ionized contaminant 110In was 1
order of magnitude smaller. The intensity of the post-
accelerated beam was set to �106 p=s on the secondary
target. Because of the high production yield the beam
current could be measured using pico-am meters with the
lasers switched on and off, respectively. This was done at
ten different occasions during the experiment in order to
determine possible variations in beam composition. The
measurements rendered a beam purity, consistent with the
offline measurements, of 90:0� 1:4%. Decay � rays as
well as Coulomb excitation � rays from other contami-
nants than 110In were searched for in the final data set but
were not observed. As has been discussed previously [11]
the REX-ISOLDE post accelerator relies on charge breed-

ing in an electron beam ion source (EBIS) as a first step.
The charge breeder and the preceding beam cooling, ac-
complished by catching the ion bunch from the separator in
a gas-filled Penning trap, set the repetition frequency of the
beam. In this case the beam was charge bred to the 27�

charge state over an EBIS confinement time of 98 ms. The
extracted beam pulse had a duration of approximately
100 �s with a decaying exponential time profile. The
beam was accelerated to 2:82 MeV=u in the REX-
ISOLDE linac before hitting a 2 mg=cm2 and 99.9%
pure 58Ni target. Because of the characteristic inverse kine-
matics of the experiment, beam and target particles emerge
in a significantly forward-focused cone after scattering.

Coulomb excitation experiments at REX-ISOLDE use a
setup that measures the energies and angles of emitted �
rays and scattered charged particles. The secondary target
position is surrounded by a set of Ge detectors, in a close
geometry, called the MINIBALL array [12]. The Ge de-
tectors run independently using sampling ADCs with a
common clock. The setup comprises 24 high-purity Ge
crystals with a total of 144 segments. The typical photo-
peak efficiency is �10% at 1.3 MeV. A circular double
sided silicon strip detector (DSSSD) is located 30.6 mm
downstream of the target. It registers the energy and angle
of a scattered beam and/or target particle (see Fig. 1). To
remedy possible dead-time effects the trigger for the par-
ticle detector included a raw particle trigger downscaled a
factor of 26, and a � ray and charged particle coincidence
trigger. The DSSSD comprises 16 annular (front face) and
24 radial (back face) strips. It is subdivided into four
separate quadrants. The combined segmentation of the
Ge detectors and the DSSSD makes it possible to recon-
struct the kinematics of individual Coulomb excitation
events for Doppler correction. At 2:82 MeV=u the incom-
ing beam travels at �� 8% which results in a complete
broadening of the raw �-ray spectrum. The effect can be
seen in Fig. 2.
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FIG. 1. Scattered beam and target particles as detected in the
DSSSD. The upper branch corresponds to scattered 58Ni and the
lower branch to 110Sn particles, respectively. The kinematical
cuts used for the identification of beam and target particles are
also indicated in the figure.
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In this experiment we selected the beam and target such
that the kinematical difference in angle and energy of the
two can be used for particle identification (Fig. 1). The
scattered beam reaches its maximum scattering angle at
�31:8� and scattered target particles at�84:1�. All angles
in this experiment correspond to safe collisions; i.e., there
is no internuclear overlap. One can also note that the
multiple-step excitation probability, or the probability to
excite any other state than the first 2�, is negligible with
this choice of kinematics. Two features of Fig. 1 can be
commented on. First, the energy used for Doppler correc-
tion was calibrated using energy loss simulations and the
known maximum scattering angle for 110Sn. The main
effect of this improved calibration is to reduce the half-
width of the Doppler-corrected �-ray peaks. Second, the
broadening of the Sn and Ni branches in Fig. 1 is almost
entirely caused by differences in emission angle due to the
finite size of the beam spot. The two-body kinematics of
the experiment was such that every Ni ion scattered within
the angular range of the DSSSD is coincident with a beam
particle scattered between 24� and 31.8�. Thus a substan-
tial part of the data set contains 2-particle� �-ray (2p�
�) coincidences. This is advantageous as it gives a direct
correlation between the number of scattered 110Sn ions,
58Ni ions, and emitted � rays. It also provides for Doppler
correction for both particles using the energy detected in

the DSSSD. The Doppler-corrected spectra for these events
are shown in the central panel of Fig. 2. A subset of events
contains only 1-particle� �-coincidences (1p��). These
correspond either to the range for scattered beam below
24� or to events where only one hit could be uniquely
reconstructed from the DSSSD. This is, e.g., due to noise
or double hits. Note that in a true 2p event the particles
come back to back in the c.m. system and are thus detected
in opposite quadrants in the DSSSD and cannot cause
double hits. Furthermore, two-body kinematics can be
completely reconstructed by detecting one of the particles.
As seen in Fig. 2 reconstruction leads to a slightly larger
half-width. The intensities obtained in this fashion were
used to extract the B�E2� for the first 2� state in 110Sn. The
method relies on the fact that the B�E2� for the first 2� state
in 58Ni is known. The cross section for exciting target and
beam particles is proportional to the corresponding B�E2�.
The angular distribution of the cross section was calculated
for the relevant angular ranges using the code CLX [13].
Taking into account the beam purity, a small angular
correction and the �-ray detection efficiency, the B�E2�
for the first 2� state in 110Sn was determined to be B�E2� �
0:220� 0:022e2b2 (see Table I). The method and the
proof-of-principle have been described in Refs. [14,15].
The new result (see Fig. 3) corroborates the published
result from intermediate-energy Coulomb excitation of
108Sn [2]. The two results imply that the first 2� states in
the even-even neutron deficient Sn isotopes retain a rela-
tively large part of collectivity compared to the neutron
rich isotopes. These states have a constant energy of
�1200 keV which has been explained from the seniority
scheme. We note that a recent safe Coulomb excitation
measurement for 114Sn at GSI has reduced the error bar of
the B�E2� for that 2� state to same range as for 116Sn but
that a shift towards a higher B�E2� remains [16]. In the
following, we compare the measured B�E2� value in 110Sn
to the results of two large-scale shell-model calculations
(see Ref. [2] ). As a starting point, note that the 1d5=2 and
0g7=2 orbits are neutron valence orbits from 114Sn towards
100Sn. The main proton valence orbit is 0g9=2. The calcu-
lations, carried out by the Oslo and Strasbourg groups, used
effective interactions defined for two different cores,
namely 100Sn and 90Zr, but using the same nucleon-
nucleon interaction. Details on how to derive the effective

 

FIG. 2. Single and particle-� coincindence �-ray spectra be-
fore Doppler correction (top panels). Doppler-corrected �-ray
spectra for 2-particle �-ray coincident events (central panel) and
the corresponding Doppler-corrected �-ray spectra for the sum
of 2-particle and 1-particle reconstructed events for 110Sn and
58Ni (bottom panel). See text for detailed discussion.

TABLE I. The second and third rows give the intensities for
the Doppler-corrected Coulomb excitation peaks of 58Ni and
110Sn from the sum of hits per bin with corresponding back-
ground subtraction and from fitting a Gaussian with linear
background. The last row gives the B�E2; 0� ! 2�� in e2b2

for 110Sn using these numbers, respectively.

Energy (keV) Bin area Fitted area
58Ni 1454.4 237� 15 222� 15
110Sn 1211.9 579� 24 588� 24
B�E2�e2b2 0:220� 0:022 0:238� 0:024
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interactions are given in [17]. The 90Zr case includes
protons in the 1d5=2, 0g7=2, 0g9=2, 1d3=2, and 2s1=2 and
neutrons in the 1d5=2, 0g7=2, 1d3=2, 2s1=2, and 0h11=2 single-
particle orbits. For a 100Sn core, neutrons confined to the
1d5=2, 0g7=2, 1d3=2, 2s1=2, and 0h11=2 single-particle orbits
define the shell-model space. In the calculation of the
B�E2� systematics, an effective neutron charge of 0:5e
and proton charge 1:5e were used for the 90Zr core while
an effective neutron charge of 1:0e was used for the 100Sn
case. The results are displayed in Fig. 3. In the case of a
100Sn core, the experimental B�E2� values are reproduced
for all isotopes down to 116Sn. Starting with 114Sn, the
theoretical results display the expected parabolic behavior
but are at askance with the experimental result for 110Sn
and the result for 108Sn [2]. Similar results have emerged
for 110;108;106Sn [3] from intermediate-energy experiments
during the preparation of this Letter. To reproduce the
experimental values one needs a larger effective charge.
Furthermore, the experimental values seem to deviate from
a good seniority picture for the lighter Sn isotopes. The
transition rates are almost independent of the mass number
A. Thus the effective charges for the lighter Sn isotopes
show stronger renormalization effects. This implies larger
core polarization due to particle-hole excitations and a
different character of core excitations in the N � Z and
N 	 Z regions of the Sn isotopic chain. To further inves-
tigate the variation and intrinsic ph structure of the polar-
ization charge in the pure neutron space, Ref. [2] included

a calculation with 90Zr as core with up to four-particle-
four-hole proton excitations (current computational limit).
In this way, one can reproduce the same trend as for the
100Sn core but with an effective charge for neutrons of 0:5e
and protons of 1:5e. These nonrenormalized charges are
discussed by, e.g., Bohr and Mottelson [18]. However, still
the enlarged calculations deviate from the new experimen-
tal data for lighter Sn isotopes. We note that the current
result indicates that further core-polarization effects may
be needed and/or a better effective interaction introduced.
Here the proton-neutron interaction plays an essential
role. In particular, the ��0g9=2�
��0g7=21d5=21d3=22s1=2�

monopoles, responsible for the evolution of the spectros-
copy between 91Zr and 101Sn, govern the evolution of the
proton Z � 50 gap with the neutron filling. These mono-
poles were fitted to reproduce the experimental spectra of
nuclei around A� 100. Here the ��0g9=2� 
 ��1h11=2�

monopole, in particular, suffer from experimental uncer-
tainties. In conclusion, we note the present experimental
result, using safe energy Coulomb excitation deviates from
current theoretical descriptions of the Z � 50 shell gap.
Further experiments investigating the reduced transition
probability of the corresponding states in lighter even-
even Sn isotopes are clearly of importance to further
illuminate this question.
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ration. The �2, taken per degree of freedom, for the deviation
between the experimental values and the theoretical predications
for the mass number sequences A1 � f114; 112; 110; 108g, A2 �
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1 � 1:6, �2
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and �2
3 � 1:9 for the 90Zr core. The corresponding values for the

100Sn core is �2
1 � 3:3, �2

2 � 4:2, and �2
3 � 4:4, respectively.

Consequently, due to the rather small error the current measure-
ment is statistically a more significant test of the deviation from
theory than the previous measurement of 108Sn.
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Abstract. The reduced transition probabilities between the first excited 2+ state and the 0+ ground
state,B(E2;0+ → 2+), have been measured in106,108,110Sn using sub-barrier Coulomb excitation in
inverse kinematics at REX-ISOLDE. The results are,B(E2;0+ → 2+) = 0.220(22), 0.226(17), and
0.228(32) e2b2, for 110Sn,108Sn, and106Sn, respectively. The results for106,108Sn are preliminary.
De-excitationγ-rays were detected by the MINIBALL Ge-array. TheB(E2) reveals detailed infor-
mation about the nuclear wave function. A shell model prediction based on an effective CD-Bonn
interaction in theν(0g7/2,2s,1d,0h11/2) model space usingeν

e f f =1.0 e follows the experimental
values for the neutron rich Sn isotopes, but fails to reproduce the results presented here.

Keywords: multipole matrix elements, shell model, Coulomb excitation, nuclei with mass number
90 to 149
PACS: 23.20.Js, 21.60.Cs, 25.70.De, 27.60.+j

INTRODUCTION

The experimental knowledge about the shell structure evolution towards the doubly-
magic self-conjugate100Sn nucleus is now becoming available through radioactive ion
beam (RIB) techniques. The investigation of exotic isotopes can reveal novel effects
of the underlying effective nucleon-nucleon interaction.Furthermore, the Sn isotopes
span a region between theN = Z = 50 andN = 82,Z = 50 shell closures making it the



longest isotopic chain available for experiment. This enables a unique study of the shell
structure variations as a function of the number of neutronsoutside the closed100Sn
core. The constancy of the energy separation between the first excited 2+ state and the
0+ ground state in the even-mass Sn isotopes is well explained within the generalized
seniority model [1]. Furthermore, according to this theory, non-diagonal matrix elements
of the even one-body E2 tensor operator will exhibit a parabolic behaviour as a function
of mass number across the Sn isotope chain. Large scale shell-model calculations [2]
based on an effective CD-Bonn nucleon-nucleon interactionagree with the generalized
seniority model. The adopted experimentalB(E2) values on the neutron-rich side of the
Sn chain follow the theoretical predictions. The experimental RIB results on106,108,110Sn
presented here and in [2, 3, 4] are consistent with each otherand display a clear
discrepancy with theoretical models.

EXPERIMENTAL TECHNIQUES

Radioactive110Sn,108Sn, and106Sn beams were produced at ISOLDE by bombarding
a thick Lanthanum Carbide primary target by 1 GeV protons. Atomic Sn was ionized
through a resonant three-step laser scheme and the isotope of interest was separated us-
ing the General Purpose Separator of the facility. The selected isotope was subsequently
cooled in a Penning-type trap after which the beam was chargebred in the Electron
Beam Ion Source. Post-acceleration was performed by the REXlinac. The final beam
energy was 2.8 MeV/u, well below the Coulomb barrier in order to exclude any excita-
tion caused by direct nuclear-nuclear overlap. The first 2+ state was populated through
sub-barrier Coulomb excitation against a 2 mg/cm2 thick 58Ni target. De-excitationγ
rays were detected by the highly segmented MINIBALL Ge-array. The recoils and ejec-
tiles were detected by a Double Sided Silicon Strip (DSSSD) detector placed 3 cm from
the58Ni target covering an angular range of about 16◦-54◦. High segmentation in both
γ-ray and particle detectors allowed for a Doppler correction. This is needed since scat-
tered particled had velocities of∼ 0.05c. A side effect of using RIBs is the significant
γ-ray background caused by unstable nuclei deposited in the target chamber. By gating
on prompt particle-γ coincidences the background was reduced. A further gate in the
analysis was to select only those events in which both the ejectile and the recoil was
detected in the DSSSD, a so called 2p event. Due to the type of inverse kinematics this
implied selecting events where both the ejectile and the recoil was scattered with an an-
gle larger than 24◦. In the case when only one particle, a so called 1p event, was detected
over 24◦, due to e.g. noise or double hits, the missing particle couldbe reconstructed.
The integrated Coulomb excitation peaks presented in this paper come from the total set
of 1p+2p events. Theγ-ray statistics was increased by∼10% due to add-back between
neighbouring Ge-crystals. It should also be mentioned thatthe beam did not consist of
only the selected Sn isotope, but also of surface ionized In.The contamination originate
in the cavity immediately after the primary target. It is of primary importance to map out
the isobaric contamination over time. In the case of110Sn, the beam contamination was
not that severe. Due to the high beam intensity of∼ 106 p/s at the secondary target, the
In component could be measured by switching off the laser andregister the beam current
just before the58Ni target. The contamination gradually increase as the proton drip line



TABLE 1. ExperimentalB(E2) values from this work.
Note that the values on108,106Sn are preliminary. The
value on110Sn has previously been published in [3]

Isotope 110Sn 108Sn 106Sn
B(E2;↑) [e2b2] 0.220(22) 0.226(17) 0.228(32)

is approached. In the106,108Sn experiments the laser power was recorded continously in
the data stream as well as the laser status. The laser was run in on/off mode for one hour
every three hours throughout the experiments. In summary, this yielded Sn fractions of
90.0(14)%, 58(1)%, and 25(1)% for 110Sn,108Sn, and106Sn, respectively. It should be
pointed out that the intensity of the108Sn beam was comparable to the110Sn beam, while
for 106Sn it was one order of magnitude lower. This is the primary reason for the larger
uncertainty in theB(E2) value for106Sn. The transition probabilities were extracted by
measuring theγ-ray yield coming from the 2+ → 0+ transition in110,108,106Sn and nor-
malizing against the correspondingγ-ray yield of the equivalent transition in58Ni which
has a knownB(E2;0+ → 2+) value. Angular integration as well as energy loss in the
58Ni target was performed by the coupled-channels code GOSIA2.

RESULTS AND DISCUSSION

The results from this work are presented in Tab. 1 and displayed in Fig. 1. TheB(E2)
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FIGURE 1. The known experimentalB(E2↑) values expressed in e2b2 across the Sn isotope chain. The
results from REX-ISOLDE presented in this paper are marked with empty squares. The value on110Sn
has been published in [3]. The value on108Sn indicated with a star comes from a measurement at GSI [2]
using intermediate Coulomb excitation. The empty circles mark theB(E2) values for106,108,110,112Sn
measured at MSU [4] using intermediate Coulomb excitation.The dotted and solid lines extending over
the entire isotope chain indicate the result of shell-modelcalculations [2] using100Sn (dotted) or90Zr
(solid) as closed shell cores.



values are in disagrement with theoretical predictions based on shell-model calculations
using an effective CD-Bonn interaction renormalized with G-matrix theory. The details
regarding the calculations presented in Fig. 1 can be found in [2]. It is however worth
mentioning that the model space included onlyν(0g7/2,2s,1d,0h11/2) with an effec-
tive neutron chargeeν

e f f = 1.0 e. Including proton-neutron excitations from 0g9/2 was
computationally not possible due to the size of the model space. The effect of core-
polarization was considered using a seniority truncated model spaceπ(0g1d2s) and
ν(0g7/21d2s0h11/2) using eν

e f f = 0.5 e andeπ
e f f = 1.5 e with 90Zr as a closed core.

A Relativistic Quasiparticle Random Phase Approximation done in Ref. [5] is consis-
tent with the results presented in this paper but fails to reproduce the adoptedB(E2)
values in the mid-shell and neutron-rich region. Inclusionof proton-neutron excitations
across theN = Z = 50 shell gap will of course increase the collectivity of the 2+ state.
This is immediately seen in the90Zr core calculation in Fig. 1. The observed transition
rates reported on here is independent ofA indicating that seniority is violated towards
100Sn and implying stronger renormalization effects on the effective charges. The pic-
ture is reversed on the neutron rich side of the isotopic chain, where a good shell closure
is reached atN = 82,Z = 50 as seen in Fig. 1. Furthermore, this region has been studied
experimentally to a greater extent. The number of neutrons in the(0g7/21d5/2) plays an
important role for the size of theπ(0g9/2)−ν(0g7/21d5/2) energy separation. The same
effect is responsible for the shell structure evolution between Zr-Sn as theπ(0g9/2) is
filled [6, 7]. We are presently preparing a parallel shell-model calculation in an extended
model space which includes proton-neutron excitations from the 0g9/2 orbit.
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