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Chapter 1

Introduction

The atomic nucleus is a very small object, its only about 10−12 cm in diameter.
Still it is the object which dominates the world around us. Hydrogen and helium
nuclei were created within the first minute of the Universe after the Big Bang some
14 billion years ago. The primordial universe expanded and lumps of hydrogen and
helium were pulled together by the gravitational force. As the hydrogen and he-
lium nuclei were pulled closer and closer together, they could fuse together forming
heavier nuclei. The lumps of hydrogen and helium became stars. Remarkably, the
mass of the constituents is greater than the mass of the fused system. The excess
mass is converted into energy according to E = mc2. The energy can be carried
away by a photon, a massless particle which we see as light. Looking up at the night
sky, twinkling with stars, what we see are the photons created from fusion inside
the stars. All elements on earth were created in the life cycle of stars. Hence, to
study nuclei is to study the very foundation of us, the Earth, and the evolution of
the Universe.

The atomic nucleus is a many body quantal system, consisting of strongly inter-
acting fermions: protons and neutrons. Its properties are governed by the interplay
between the strong, weak, and electromagnetic forces. Nuclei can thus display a
plethora of interesting and diverse phenomena. The Nobel price in physics was
awarded to Maria Goeppert-Mayer and Hans Jensen in 1963 for their shell-model
description of the nucleus. In that mean field model, every neutron and proton
inside the nucleus experiences an average force due to all the other nucleons. This
means that every nucleon occupies a defined state, which has a specific set of quan-
tum numbers associated with it. Goeppert-Mayer explained why some nuclei with
certain numbers of protons and neutrons are more stable than the neighbouring
nuclei. These are now known as the ’magic numbers’: 2, 8, 20, 28, 50, and 82.
The numbers represent the closing of major shells. The term ”magic numbers” was
invented by Eugene Wigner to indicate his disbelief in the phenomenon [1] but by
now the magic numbers are well established both experimentally and theoretically.

In this thesis the doubly magic nucleus 56
28Ni28 is studied. The ground state

of 56Ni is supposed to be formed by a closed proton and neutron shell. However,
contemporary state-of-the-art shell model calculations indicate that the closed shell
structure is not dominating the ground state of 56Ni. The energy of the first excited
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4 CHAPTER 1. INTRODUCTION

state in 56Ni is much lower compared to other doubly magic nuclei, as is the transition
probability from the first excited state to the ground state. 56Ni is thus an interesting
nucleus to study as it does not behave like a ’typical’ magic nucleus.
The first paper discusses 56Ni.

• Gamma-ray spectroscopy of the doubly magic nucleus 56Ni

E. K. Johansson, D. Rudolph, J. Ekman, C. Fahlander, C. Andreoiu, M.A. Bent-
ley, M. P. Carpenter, R.J. Charity, R.M. Clark, P. Fallon, R. V. F. Janssens,
F.G. Kondev, T.L. Khoo, T. Lauritsen, A.O. Macchiavelli, W. Reviol, D.G. Saran-
tites, D. Seweryniak, C.E. Svensson, and S. J. Williams.

Eur. Phys. J. A 27, 157-165 (2006).

In Sec. 3 the experimental method to produce 56
28Ni28 is described. The analysis of

the experimental data and its interpretation is discussed in Sec. 4 within the theo-
retical framework outlined in Sec. 2.

A new exciting decay mode has been discovered in neutron deficient exotic nuclei
in the mass A ∼60 region. Since its first observation in 58Cu it has been observed in
several nuclei. A highly deformed excited nuclear state usually decays by emitting γ-
rays but 58Cu instead decays by emitting a proton. The daughter nucleus is nearly
spherical. Thus in the process of proton emission the mother nucleus drastically
rearranges its shape and hence its potential. The proton has to tunnel through
the potential barrier to escape the nucleus. By measuring the properties of these
protons, insights into the tunnelling process may be achieved. To accurately measure
the protons a charged particle detector array - the LuSiA - was constructed.
Paper 2 deals with prompt proton decays in the A ∼60 region and LuSiA;

• Proton decay in the A ∼ 60 region

E. K. Johansson, D. Rudolph, R. Hoischen, L-L. Andersson, R. du Rietz,
J. Ekman, C. Fahlander, C. Andreiou, M. Carpenter, R. J. Charity, C. J.
Chiara, C. Hoel, O. L. Pechenaya, W. Reviol, D. G. Sarantites, D. Sewery-
niak, L.G. Sobotka, D. Torres, S. Zhu, M. Hellström, S. Pietri, Zs. Podolyák,
P.H. Regan, F. Becker, P. Bednarczyk, L. Caceres, P. Doornenbal, J. Gerl,
M. Górska, J. Grȩbosz, I. Kojouharov, N. Kurz, W. Prokopowicz, H. Schaffner,
H.J. Wollersheim, L. Atanasova, D.L. Balabanski, M.A. Bentley, C. Brandau,
J. Brown, A.B. Garnsworthy, and A. Jungclaus.

Nuclear Structure ’06, conference on nuclei at the limits, proceedings, to be
published.

The experiment in which LuSiA was used is described in Sec. 3.3 and the calibration
of it is discussed in detail in Sec. 5. The thesis finishes with some conclusions and
an outlook (Sec. 6).



Chapter 2

Theoretical background

2.1 The nuclear shell model

It is an experimental fact that atomic nuclei exhibit a shell structure. For instance,
along the line of stability the proton separation energies show large discontinuities
for certain proton numbers; 2, 8, 20, 28, 50, and 82. These are the so called magic
numbers. For neutrons one additional magic number is known; 126. The magic
numbers represent the closing of major shells and with the discovery of them came
the desire to describe the nucleus in an analogous way to the atom. However, sig-
nificant differences exists between the nuclear shells and the atomic shells. The
electrons move in an attractive Coulomb potential created by the nucleus, whereas
the protons and neutrons move in a potential created by themselves. It implies for
nucleons that there is no ’independent’ center of the force, like in the atomic case.
The nuclear potential is created from the strong, the Coulomb and the weak forces.
It is assumed that the nucleons move independently of each other in the nucleus.
The independent motion is motivated by the short range nature of the strong force
and the Pauli exclusion principle; only one spin-1/2 particle is allowed to occupy a
certain quantum state at a given time. When trying to theoretically describe nuclei
two major problems arise; (i) the nucleus is a many body system, but not even the
classical three body system is exactly solvable, and (ii) the nucleon-nucleon interac-
tion is not well understood.

The starting point for a theoretical model to describe nuclei is to solve the
Schrödinger equation

HΨ = EΨ

where the Hamiltonian, for an A nucleon system, is given by

H =
A∑

i=1

(− h̄2

2m
∇2

i ) +
1

2

A∑

j,i=1

Vij(~ri, ~rj)

The first term of the Hamiltonian describes the kinetic energy of the nucleons. A
two body interaction between the nucleons is described by the second term. As the
nucleon-nucleon interaction is not completely understood, no exact form for the last
term in the Hamiltonian exists. To handle this problem in practice, the Hamiltonian
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ijV
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Figure 2.1: (a) The two-body interaction Vij in a nucleus, is repulsive (attractive)
at short (long) distances between the nucleons. (b) The average one body potential,
is used to approximate the two body interaction. Picture inspired by Ref. [2].

is divided into
H = H0 +Hres (2.1)

where

H0 =
A∑

i=1

(− h̄2

2m
∇2

i + Ui)

and

Hres =
1

2

A∑

i,j=1

Vij(~ri, ~rj) −
A∑

i=1

Ui

where H0 describes the motion of A nucleons, independent of each other in the
same average field, Ui. The residual interaction is described by Hres, the smaller
the effect of it, the better the assumption of an average independent field becomes.
In Fig. 2.1 the difference between the two potentials is schematically shown. The
Vij potential is repulsive at short distances between the two particles, reflecting the
behaviour of the strong force. The Ui potential on the other hand is attractive for all
distances, inside the nucleus. It also utilises the short range of the strong force, in
that the central potential is proportional to the density distribution of the nucleus.
A commonly used central potential is the Woods-Saxon potential

UWS(r) =
−V0

1 + e
r−R

a

where V0 is the depth of the potential well, R is the nuclear radius, and a is the
skin diffuseness parameter. Typically the depth of the well, V0, is 50 MeV and a is
0.55 fm. For normal nuclear matter the radius, R, is given by R = 1.3 ·A1/3, where
A is the mass number of the nucleus. This approximation of the nuclear radius is
based on the assumption that the nucleus is spherical. Thus this model is valid for
spherical nuclei.

For a central potential the Schrödinger equation can be separated into a radial
and an angular part, which are independent of each other. To solve the angular
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part, the orbital angular quantum number, ℓ, is introduced through

~ℓ2|ψ >= ℓ(ℓ+ 1)h̄2|ψ >

where ψ is the single-particle wave function. ℓ can only take integer values, denoted
s, p, d, etc. corresponding to ℓ = 0, 1, 2, etc. Connected to the orbital angular mo-
mentum is the quantum number parity, π. It gives the symmetry of a wave function
if its space coordinates are changed from r → -r. The parity is determined by π =
(−1)ℓ. Hence orbitals with an even (odd) orbital angular quantum number have a
positive (negative) parity.

The orbital angular momentum vector has different orientations in space with
respect to the quantisation axis, z. The projection of ~ℓ on the z - axis is given by

ℓz|ψ >= mℓh̄|ψ >

mℓ takes integer values from -ℓ,...,ℓ. The protons and neutrons have an intrinsic
spin, ~s, of 1/2 as discusses earlier, its projection on the z - axis is given by

sz|ψ >= msh̄|ψ >

The number of particles that can occupy a given shell is given by

2(2ℓ+ 1)

where the factor (2ℓ + 1) is the degeneracy in mℓ and the factor 2 corresponds to
the two spin directions of the intrinsic spin. The energy levels obtained using the
Woods-Saxon potential are shown in panel (a) of Fig. 2.2. The notation is given in
nℓ, where n is the number of levels for a given ℓ orbital and the numbers in the cir-
cles are the theoretical magic numbers. Evidently the experimental magic numbers
beyond 20 are not reproduced by this model.

To properly recreate the experimentally observed magic numbers it is necessary
to add a spin-orbit interaction into the Woods-Saxon potential

UWS+SO =
−V0

1 + e
r−R

a

+ USO(r)~ℓ · ~s.

This was discovered by Goeppert-Mayer in 1949 [3]. The spin-orbit interaction
couples the orbital angular momentum, ℓ, to the intrinsic spin, s, through

~j = ~ℓ+ ~s

The quantum number j is associated with ~j, and the projection on the quantisation
axis is given by

mj = mℓ +ms

The effects from adding the spin-orbit interaction can be seen in panel (b) of Fig. 2.2.
The spin orbit interaction breaks the degeneracy of ℓ ≥ 0 levels into a j = ℓ+s level
and a j = ℓ− s level. The levels with j = ℓ + s are lowered in energy, clearly seen
in Fig. 2.2 panel (b). The levels in panel (b) are denoted according to nℓj, and the
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Figure 2.2: Panel (a) shows the single particle energies obtained from a Woods-
Saxon potential, panel(b) the single particle energies obtained from a Woods-Saxon
potential with the proper spin-orbit interaction added. The numbers in the circles
are the magic numbers. The protons and neutrons are treated separately. For
instance in the 1s1/2 orbit, two protons and two neutrons can each be placed.

degeneracies of the levels are now (2j + 1) as the degeneracy in spin is lifted. From
the figure it is evident that the experimental magic numbers are well reproduced
by this model. The magic number 28 first appears when the spin-orbit interaction
is included. Hence 56Ni is the first doubly magic nucleus to be described by the
inclusion of the spin-orbit force. For a more comprehensive description of nuclear
models, see for instance Refs. [2, 4].

The doubly magic nucleus 56
28Ni28 has 28 protons and 28 neutrons. It implies that

all orbitals up to and including the 1f7/2 orbit are completely filled for both protons
and neutrons. The protons (neutrons) couple to spin zero in the ground state, due
to the so called pairing interaction. It means that the ground state of 56Ni has spin
parity 0+, alike all nuclei with even numbers of protons and neutrons. For a nucleus
with a single unpaired nucleon the ground state spin and parity will be determined
by the state of the odd nucleon.
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To create an excited state from a closed shell nucleus as 56Ni, a pair of nucleons needs
to be broken and at least one of the nucleons needs to be lifted to a higher lying
shell. This implies that the energy of that excited state is relatively high. On the
other hand, nuclei with odd nucleons can create excited states by only re-coupling
their angular momenta. Usually it correspond to excitations of low energy. The first
excited state of 56Ni has an energy of 2.7 MeV [5], whereas the first excited state
of 57Ni is at 0.77 MeV [6]. 57Ni has the same configuration as 56Ni, except for an
additional neutron in the 2p3/2 orbit. The ground state and spin parity of 57Ni is
3/2− and the first excited state has spin and parity 5/2− (cf. Fig. 2.2 (b)). Thus
the ground state and the first excited state in 57Ni is produced by the odd nucleon.
To continue predicting excited states in this fashion soon proves very difficult.
When the number of nucleons, which participate in the formation of an excited
state increases, the different possibilities and ways of creating the excited state
also increases. A very powerful tool in predicting excited states in nuclei are shell
model calculations. In the nuclear structure group at Lund University the code
ANTOINE [7, 8] is often used.

2.1.1 A shell model calculation code - ANTOINE

A shell-model calculation can be performed to compare experimental results to theo-
retical predictions. The shell-model calculation can among other things derive level
energies, wave functions, the occupation numbers, electromagnetic moments, and
transition probabilities.

The Hamiltonian used in shell model calculations describes the nucleons in a
mean potential interacting through residual interactions. For two states it can be
expressed as

H =



εa1

0

0 εa2


+



< φ1|V11|φ1 > < φ1|V12|φ2 >

< φ2|V21|φ1 > < φ2|V22|φ2 >


 (2.2)

where |φ1〉 (|φ2〉) are basis states. Basis states have a given spin, parity, and iso-spin,
and allow the Hamiltonian to be represented (as above) with a matrix. The first
matrix contains the single-particle energies. The elements in the second matrix are
called two-body matrix elements. The diagonal elements represents the expectation
value of V11 respectively V22 on |φ1〉 and |φ2〉. The off-diagonal elements represent
configuration mixing, i.e. the effect of state 1 on state 2 and vice versa. By di-
agonalising the Hamiltonian matrix the energy eigenvalues for different states can
be obtained. The single particle energies and the two body matrix elements form
an interaction (see Sec. 2.1.2), which tries to describe an interaction as realistic as
possible.

To solve the Schrödinger equation includes, as mentioned above, diagonalisation
of the Hamiltonian matrix. The dimensions of the Hamiltonian rapidly becomes very
large (≥ 107). In Sec. 4.2, Fig. 4.5 an example of the dimensions of the Hamiltonian
matrix is shown. This depends on the fact that the number of basis states needed to
describe a given level in the nucleus rapidly increases. Consequently, it is necessary
to somehow restrict the shell-model calculations.
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A common first step is to limit the number of nucleons which can participate in the
calculation. Typically an inert core is defined, and from it no nucleons are assumed
to partake in the creation of excited levels. For nuclei in the fp shell, the doubly
magic nucleus 40

20Ca is often used as an inert core. Relative to it, 56
28Ni28 has eight

more protons and neutrons, which are called valence nucleons.
Secondly, the number of available orbitals which nucleons can be excited into is
limited. Typically, excitations from 1f7/2 into the 2p3/2, 1f5/2 and 2p1/2 orbitals are
allowed.
It is also possible to restrict the maximum number of possible excitations, t, from
the 1f7/2 orbit, i.e., the maximum number of nucleons, which can be excited into
the other fp orbitals. The absolute number, t′, of allowed particle-hole excitations
can also be determined. This enables the study of pure particle-hole excitations.
In Sec. 4.2 the results from several large scale shell-model calculations are presented.

2.1.2 Interactions

With the code ANTOINE it is possible to use different interactions. The calcu-
lations presented in Sec. 4.2 utilises two different standard interactions for the fp
shell, namely KB3G [9] and GXPF1 [10, 11], both containing the 1f7/2, 2p3/2, 1f5/2

and 2p3/2 orbitals.

KB3G

The KB3G [9] interaction was developed by A. Poves et al. in 2001. It is a mod-
ification of the KB3 interaction, which was derived from the bare nucleon-nucleon
interaction. The modifications involve changing the single-particle energies and in-
troducing a mass dependence in the interaction, to better reproduce the shell gap at
N = Z = 28. The interaction is derived using 40Ca as a core and the single-particle
energies are given by the experimental spectrum of 41Ca. Typically KB3G is used
for nuclei situated in the lower fp shell with A ∼ 50.

GXPF1

The GXPF1 [10, 11] interaction was developed by M .Honma et al. in 2002. The
GXPF1 interaction is also derived from the nucleon-nucleon interaction, with 195
two-body matrix elements, and four single particle energies. These were determined
by fitting the energy eigenvalues obtained from the theoretical Hamiltonian matrix
to 699 experimental binding energies and energy levels in 87 nuclei in the A ∼ 60
region, one of which was 56Ni. The single-particle energies were used as a parameter
in the interaction, and fitted to experimental data. There is also a mass dependence
in the interaction. The GXPF1 interaction is hence a more empirical interaction
than KB3G.
A modification of GXPF1 called GXPF1a was presented in 2005. It was created
due to the problems GXPF1 had in describing some neutron rich nuclei in the fp
shell [12]. In it the single-particle energies and the two-body matrix elements have
been slightly adjusted with respect to GXPF1.
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2.1.3 The Coulomb energy

The Coulomb force is present in the nucleus, as the protons are positively charged.
In the KB3G and GXPF1 interactions the Coulomb force is not considered. It
is motivated by the fact that the strong force is approximately a hundred times
stronger than the Coulomb force. Thus the Coulomb force can be seen as a small
perturbation in the nucleus.
The Coulomb force is usually divided into monopole and multipole components
when discussed in relation to shell model calculations. The monopole component
consists of a radial- and an electromagnetic spin-orbit component. The multipole
component represents the effect of breaking and aligning pairs of protons. These
effects are discussed in detail in Ref. [13] and in Ref. [14]. It is possible to include
the Coulomb force in the interactions by modifying the single-particle energies and
the two-body matrix elements. The effect of including it for the present calculations
is discussed in Sec. 4.2.4.

2.2 Electromagnetic Transitions

An excited nuclear state can decrease its energy by emitting a γ ray. It then proceeds
from an initial state ψi to a final state ψf . The character of the γ ray, which
can be either electric or magnetic, is denoted σ and the multipole order of the
transition is denoted L. A γ ray emitted from a nucleus has a definite energy, Eγ ,
and angular momentum Lh̄. Given an excited state of the nucleus with angular
momentum, ~Ji, and a final state with angular momentum, ~Jf , the conservation of
angular momentum gives

~Ji = ~Jf + ~L

The angular momentum selection rules are given by

|Ji − Jf | ≤ L ≤ Ji + Jf

An exception to the above selection rule occurs if Ji = Jf =0, as L = 0 γ-ray
transitions are forbidden, since a photon has an intrinsic angular momentum of 1h̄.
Thus for nuclei, transitions from 0π → 0π are forbidden to γ decay. Typically these
transitions instead decay by internal conversion.

The character of the γ-ray is determined by

parity conserving : L even → electric, L odd → magnetic
parity changing : L odd → electric, L even → magnetic

(2.3)

A given transition can consists of several components, for instance a 4+ → 2+ transi-
tion is composed of E2, M3, E4, M5 and E6 components, where the E2 component
usually is by far the strongest (see Sec. 2.2.1).
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2.2.1 Transition probability

The transition probability, λ(σL), for a γ-ray emission of multipolarity L and char-
acter σ is given by

λ(σL, Ji → Jf ) =
8π(L+ 1)

h̄L[(2L+ 1)!!]2

(
Eγ

h̄c

)2L+1

B(σL, Ji → Jf), (2.4)

where B(σL) is the so called reduced transition probability and Eγ is the γ-ray
energy. The reduced transition probability can be expressed with the help of the
reduced matrix element 〈ψf ||M(σL)||ψi〉

B(σL, Ji → Jf ) =
1

2Ji + 1
|〈ψf ||M(σL)||ψi〉|2, (2.5)

The electric (EL) and magnetic operators (ML) for a nucleus with A nucleons are
sums over the single-particle operators

M(EL) =
A∑

i=1

eir
L
i YLmL

, (2.6)

M(ML) =
A∑

i=1

µn

(
2

L+ 1
gi

l li + gi
ssi

)
· [∇(rL

i YLmL
)], (2.7)

where YLmL
are the spherical harmonic functions and ri is the orbital radius for

particle i. These operators are derived for a particle with charge ei and magnetic
moments are determined by the gyromagnetic factors gℓ and gs. If the transition is
of single particle character, the reduced transition probabilities can be estimated by

λ(EL) =
8π(L+ 1)

L[(2L+ 1)!!]2
e2

4πǫ0h̄c

(
E

h̄c

)2L+1(
3

L+ 3

)2

cR2L (2.8)

λ(ML) =
8π(L+ 1)

L[(2L+ 1)!!]2
e2

4πǫ0h̄c

(
E

h̄c

)2L+1(
µp −

1

L+ 1

)2

·
(

h̄

mpc

)2(
3

L+ 2

)2

cR2L (2.9)

These are the so-called Weisskopf estimates [4]. They can be compared to experi-
mental data, and give a hint if a certain transition is of single-particle character or
if it is collective.

That the lowest possible multipole order dominates for a given transition can be
shown by calculating the respective transition probabilities for an A = 56 nucleus
and a 2 MeV γ ray

λ(M1) : λ(E2) : λ(M3) = 1.0 : 4.5 · 10−3 : 3.9 · 10−9

and
λ(E1) : λ(M2) : λ(E3) = 1.0 : 1.4 · 10−6 : 1.2 · 10−9

From these it can also be concluded that for a given multipole order the electric
radiation is more probable than magnetic radiation. It is also possible to have a
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mixing of the two lowest multipole orders, for instance a E2/M1 mixture. The
reduced transition probabilities for the former can be expressed as

B(M1; Ji → Jf) = 1

2Ji+1
|〈Jf ||M1||Ji〉|2

B(E2; Ji → Jf ) = 1

2Ji+1
|〈Jf ||E2||Ji〉|2,

(2.10)

where the respective transition operators are given by

M1 = µN
∑A

i=1

[
ĝs(i)~si + ĝl(i)~li

]
Y10

E2 =
∑A

i=1 ê(i)r
2
i Y20.

(2.11)

In these equations the effective ĝ factors and effective charges (ê) are used. The
bare g factors for protons (neutrons) are gℓ = 1(0) and gs = 5.586(-3.826). However,
inside the nucleus the g factors and charges for protons and neutrons might be
different than for free nucleons. For instance, a valence proton can polarise the
otherwise inert core. Thus effective ĝ factors and effective charges are introduced.
In Ref. [15] the effective charges were determined to be êp=1.15e and ên=0.8e for
protons respective neutrons.

2.2.2 Branching ratios

If several final states can be reached in the process of the γ decay, the transition
probability will be affected. The total transition probability is the sum of the in-
dividual transition probabilities. The contribution of each transition to the total
decay probability, is determined by so called branching ratios, br. For instance, in

*XA
Z

Z−1

Z
XA

1

2

3

γ

γ

γ

p

XA−1

Figure 2.3: The decay of an excited state into several final states affects the branch-
ing ratios of the individual decay possibilities.

Fig. 2.3 the decay of an excited level in the nucleus A
ZX is shown. The excited level

can decay with two different γ rays and with a proton decay. The branching ratio
for γ1 will hence be

brγ1
=

λγ1

λγ1
+ λγ2

+ λp

. (2.12)
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This is proportional to the experimental measured intensity

brγ1
∝ Iγ1

Iγ1
+ Iγ2

+ Ip
. (2.13)

2.2.3 Mixing ratio

By using the transition probabilities it is possible to determine the mixing degree of
a given γ-ray transition. The mixing ratio is defined as

δ(σ2L2/σ1L1) =

√√√√λ(σ2L2)

λ(σ1L1)
. (2.14)

If λ(σ2L2) = 0 then δ(σ2L2/σ1L1)=0, and the transition is said to be pure since the
mixing is zero. If L=∆J as well, the transition is said to be stretched.

2.3 Prompt particle decay

A new fascinating decay mode was discovered in 58Cu in 1998 [16]. 58Cu was pro-
duced through a fusion-evaporation reaction in an excited, highly deformed state.
The rotational band γ decayed until the band head. Instead of the expected γ-decay
out into the spherical states, a proton was emitted. The new decay mode is called
‘prompt proton decay’, because the formation of the residual nucleus, the γ-decay
of the rotational band in the second minimum, the particle emission, and finally the
γ decay in the daughter nucleus are observed in ‘prompt’ coincidence in thin-target
in-beam fusion-evaporation experiments. Through the emission of the proton the

j
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j14
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J ω
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29 29

28
57 Ni29

γ

γ

spherical

spherical

proton
deformed

Figure 2.4: In the prompt proton decay the mother nucleus drastically changes it
shape from deformed to spherical when it emits a proton. The prompt proton decay
was first observed in 58Cu. Picture taken from Ref. [17]
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daughter nucleus 57Ni is created, in a near spherical state, i.e. a drastic rearrange-
ment of the nuclear mean field occurs during the decay. Since this first observation
it has been discovered in many other nuclei in the A ∼60 region, to mention a few
58Ni, 57Ni and 59Cu. Two cases of prompt α decay have also been observed in 58Ni.
Hence, the decay was renamed to the ’prompt particle decay’. The prompt proton
decay is schematically shown in Fig. 2.4.

The prompt proton decay is different from previously observed proton decays
in some very important aspects. Firstly the prompt proton decay competes with
ordinary γ radiation, whereas observed ground state or isomeric proton radioactivity
competes with β+ decay. Hence the time scale of the prompt proton decay is the
same as that of the γ decay i.e. 10−12-10−9 s. Secondly a dramatic change of nuclear
shape from the mother nucleus to the daughter nucleus occurs in the process of the
decay.

The prompt particle has to tunnel through the nuclear potential to escape the
mother nucleus. If the angular momentum of the mother and daughter nuclei are
known then the angular momentum of the particle is also known. The measured
angular distribution of the particle can be compared to the expected angular distri-
bution. It has been suggested that if there is a difference between the expected and
measured distributions that it could be related to the time it takes for the proton
to penetrate the potential barrier, i.e. the tunnelling time. Since, if the nucleus
is deformed when the proton escapes it, the proton will have a different angular
distribution than if the nucleus is spherical when it is emitted. It has also been
suggested that the angular distribution of prompt protons could reveal information
about single particle orbitals inside deformed potentials allowing nuclear densities
to be determined [18].

The main purpose of experiment 3 (c.f. Sec. 3.3) was to study the angular distri-
butions of prompt protons. To measure with high accuracy the angular distributions
a detector with a high angular coverage and granularity is needed. The Lund uni-
versity Silicon Array -LuSiA- was created to meet these requirements. LuSiA is
described in detail in Sec. 5. The angular distribution of prompt protons may give
insights in to quantum mechanical tunnelling, a widespread phenomena not only in
nuclear physics, but in the natural sciences in general.
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Chapter 3

Experimental technique

The doubly magic nucleus 56
28Ni28 is an unstable nucleus, which is not found naturally

on earth. The lightest stable isotope of nickel is 58Ni. It means that 56Ni is two
neutrons away from stability. Hence if one wishes to study this doubly magic nu-
cleus and other exotic nuclei, they have to be produced in a laboratory. A common
experimental method to produce neutron deficient nuclei is by initiating heavy ion
fusion-evaporation reactions. A compound nucleus is formed, it decays by evaporat-
ing particles and γ rays. By detecting the reaction products the residual nucleus can
be identified. In Sec. 3.1 the experimental method is described and the experimental
equipment is discussed in Secs. 3.2.1 and 3.2.2. The experiments which this work
is based on are outlined in Sec. 3.3 along with the data handling.

3.1 Experimental method

The fusion-evaporation reaction may be thought of as a two step process. The
incident beam nuclei hit the target nuclei. The individual nucleons of the beam
and the target come into each others range of strong interaction, and the energy
of the beam nuclei spreads throughout the whole system. The energy becomes
shared between the nucleons, and a fused system is formed. The compound nucleus
is excited but the average energy of the nucleons is not large enough to free it
from the nucleus. But through collisions between the nucleons some of them may
gain enough energy to escape the compound nucleus. The compound nucleus is
thus an intermediate state existing after fusion but before decaying through particle
evaporation. The compound nucleus has an excitation energy of

E∗ = Q+ ECM = Q+ Eb
Mt

Mb +Mt

(3.1)

where Q is the Q value of the reaction and ECM is the center of mass energy available
for excitation, Eb is the beam energy and Mt (Mb) is the mass of the target (beam).
The maximum angular momentum transferred to the compound nucleus is

Lmax =
Mt

Mb +Mt
· bmax ·

√
2Mb(Tb − EC) (3.2)

The maximum impact parameter which generates such a reaction is bmax. It can be
estimated by

bmax = Rb +Rt = R0(A
1/3

b + A
1/3

t ) (3.3)

17
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where Rb and Ab ( Rt and At) are the radius and the mass number of the beam
(target) nucleus. The compound nucleus thus has a range of angular momentum,
depending on the impact parameter. The Coulomb barrier, EC , has to be overcome
by the two positively charged nuclei in order for them to fuse together. It implies
that the center of mass energy must at least be larger than the Coulomb barrier,
which can be approximated by

EC = 1.44
ZbZt

RC
(3.4)

where Zb and Zt are the proton numbers for the beam and the target. The largest
impact parameter is expected when the Coulomb barrier is the greatest, hence it
can be approximated that RC = bmax.
The compound nucleus ’forgets’ the process of formation and decays by statistical
rules [4]. Many different residual nuclei can be produced from the same compound
nucleus. For instance 56

28Ni is produced by evaporation of 2α and 55
28Ni by evaporation

of 2α1n from the compound nucleus 64
32Ge. The decay probabilities depend only on

the energy given to the system. The particle decay occurs within a time frame of
≤10−19 seconds. Particle evaporation is an effective way of reducing the excitation

p

p

α

Figure 3.1: The compound nucleus formed in the fusion-evaporation reaction decays
by particle and γ-ray emission. The yrast line is defined as the line connecting the
states with the lowest possible energy for a given spin.

energy in the compound nucleus. For instance, an α-particle takes on average away
∼15 MeV and protons ∼5-6 MeV. The more excited the compound nucleus is, the
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more particles are emitted. For the neutron deficient A ∼ 60 region, protons and α
particles are much more likely to be evaporated than neutrons. This is due to the
higher neutron separation energy (∼ 15 MeV) whereas the proton separation energy
is ∼ 5 MeV. The number of evaporated particles and their kind defines an reaction
channel, and thus also defines the residual nucleus.

The average binding energy of the nucleons is about 8 MeV [4]. When the
excitation energy of the compound nucleus is below ∼ 8 MeV, particle evaporation
is thus no longer energetically possible. The nucleus then has to decay by emitting
electromagnetic radiation, i.e., γ rays. The γ rays hold much information on the
structure of the nucleus, and these are the ones of interest here. The γ-ray emission
continues until the nucleus reaches its ground state. This is schematically illustrated
in Fig. 3.1 along with the particle evaporation threshold and the particle evapora-
tion. The entire reaction, from formation of the compound nucleus to the ground
state of the reaction product takes about 10−11-10−9 seconds.

The γ rays produced in the fusion-evaporation reactions studied in this thesis
were detected by a Ge-detector array; Gammasphere (Sec. 3.2.1). The evaporated
charged particles were detected by Microball and/or LuSiA- the Lund university
Silicon Array (Sec. 3.2.2). The evaporated neutrons were detected by the Neutron
Shell and the residual nuclei were separated in the Fragment Mass Analyser and
identified in the ion chamber (Sec. 3.2.2). These detectors are described in Sec. 3.2.

3.2 Experimental set-up

3.2.1 Gammasphere

To detect the γ-rays emitted from residual nuclei, a state-of-the-art Ge-detector ar-
ray called Gammasphere [19] was used. Gammasphere (GS) is currently placed at
Argonne National Laboratory outside Chicago, U.S.A . GS can consist of up to 110
high purity Ge-detectors packed in a 4π geometry. The detectors are placed in 17
rings at angles between 17.3◦ to 162.7◦ with respect to the beam axis. The Gam-
masphere can be opened in two symmetrical halves. In Fig. 3.2 one of the halves
can be seen. When the two halves are closed, the fronts of the Ge-detectors are 25
cm from the target position. The photo-peak efficiency in this geometry is typically
∼ 9% and the energy resolution is 2.4 keV at 1.33 MeV. Gamma rays can interact
with matter in three ways; the photoelectric effect, Compton scattering and pair
production. For γ-ray energies between 200 - 1200 keV, Compton-scattering is the
dominating interaction mode in the Ge-detectors. If a γ ray scatters in the detector
it can scatter in such a way that it escapes the detector, meaning it only will deposit
part of its total energy. A γ ray for which this happens will only contribute to in-
crease the undesirable background. To suppress this background, the Ge-detectors
are surrounded by BGO detectors. If a γ ray strikes a Ge-detector and then scatters
into a BGO detector, the event is vetoed; it is disregarded in the data collection. In
this way the number of events in the full energy peak are considerably enhanced.
The BGO detectors have a poor energy resolution, but a high efficiency due to their
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GS

NSFMA

MBLuSiA Beam

Figure 3.2: The Gammasphere (GS) is opened and one of its symmetrical halves is
seen. The beam enters from the right. In the target chamber LuSiA and Microball
(MB) are placed. Some of the forward detectors in GS have been replaced by the
Neutron Shell (NS). To the very left in the figure, the first magnet in the Fragment
Mass Analyser (FMA) can be seen.

high density and high Z. However, as the BGO detectors are primarily used as
veto detectors, the poor energy resolution is not of interest, only their efficiency is
important. If the γ-ray multiplicity is high, it is possible to have within the same
event a γ ray impinging on a BGO detector and another one at a Ge-detector. The
BGO detector will then veto a good event. To minimise this possibility heavimet
absorbers can be placed in front of the BGO detectors. These can prevent the γ ray
from impinging directly on the BGO detectors.

3.2.2 Ancillary detectors

In the fusion-evaporation reaction, not only γ-rays are created but also protons,
α-particles, neutrons and the residual nucleus itself. To detect these various detec-
tors are used. The Microball and LuSiA detect charged particles, the Neutron Shell
detects neutrons. The residual nuclei are separated from each other in the FMA
and identified in the ion chamber. The different detectors are presented below.

The Microball and LuSiA

Microball (MB) [20] and LuSiA are charged particle detectors. They are both placed
in the target chamber, inside of Gammasphere (see Fig. 3.2). Microball is a scin-
tillator detector consisting of up to 95 closely packed CsI(Tl) elements covering a
maximum of 97% of solid angle. The elements are placed in 9 rings covering angles
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Figure 3.3: The Microball detector consists of 95 CsI(Tl) scintillator elements, placed
in nine rings. Picture taken from Ref. [21].

from 4◦ to 171◦ with respect to the beam axis. These are seen in Fig. 3.3. The
reaction kinematics produces particles which are strongly focused at forward angles.
Therefore the most forward rings of MB are placed at a greater distance from the
target. This minimises the count rates for each element, as they have a smaller solid
angle, when placed further out. The distance from the target to the elements varies
from 110 mm for the most forward ring to 45 mm for the most backward ring. The
energy resolution of MB is 240 keV for an α particle of 8.78 MeV. Each element is
covered by absorber foils consisting of either Pb or Ta to stop heavy high energy
particles, i.e. scattered beam particles.
LuSiA is an array consisting of eight ∆E-E strip telescopes which together provides
2048 pixels in a near 3π geometry. The ∆E and E detectors are silicon semicon-
ductor detectors. LuSiA is described in detail in Sec. 5.

The Neutron Shell

The Neutron Shell [22], also seen in Fig. 3.2, consists of up to 30 hexagonal liquid
scintillator detectors. The four most forward rings of Gammasphere can be replaced
by the Neutron Shell, which then covers ∼ 25% of the solid angle. Neutron detectors
can detect both neutrons and γ rays, but the detectors are covered by Pb absorbers
to prevent low energy γ rays from striking the detectors. The low energy γ rays
are harder to discriminate from neutrons than high energy γ rays. Alike γ rays,
neutrons are more difficult to detect than charged particles. This is mainly due
to the different interaction mechanisms involved when these particles interact with
matter. Charged particles loose energy continously when passing through matter
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due to electromagnetic interaction with mainly the electrons in the detector. Neu-
trons are electrically neutral, thus they can only interact by nuclear scattering in
the detector. When the neutron scatters on a nucleus in the detector, it gives rise
to a small recoil. The recoiling nucleus will electromagnetically interact with the
rest of the detector material, this energy can be measured. To optimize the neutron
interaction, hydrogen rich material is often used as a detector material and the vol-
ume of these is typically large.

The Fragment Mass Analyser and Ion Chamber

The Fragment Mass Analyser (FMA) is a recoil mass spectrometer located at the
ATLAS accelerator at Argonne National Laboratory in the U.S.A. It is used to sepa-

Figure 3.4: The FMA consists of dipole and quadrupole magnets (MD, Q) and
dipole electric (DE) fields to separate residual nuclei from each other and from
beam primary ions. Picture taken from Ref. [23].

rate residual nuclei from the primary heavy ion beam as well as residual nuclei from
each other. The FMA is a system of magnetic and electric fields, seen in Fig. 3.4
The magnetic and electric fields of up to 500 kV across a 10 cm gap [23] are used
to guide the residual nuclei and focus them onto the ion chamber at the end of the
FMA. The ions are dispersed by mass to charge ratio (A/q) at the focal plane at
the very end of the FMA.
The ion chamber at the back of the FMA has an anode segmented into three
parts [24]. This allows the different energy losses of the ions to be detected. The
three segments are along the beam direction, it is also segmented in the perpendic-
ular direction to allow high count rates.
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3.3 The experiments and data handling

The work presented in this thesis is based on three fusion-evaporation reaction ex-
periments; GSFMA66, GSTOT and GSFMA138. Hereafter they will be called ex-
periment 1, 2 and 3. The details of the experiments are summarised in Tab. 3.1.

GSFMA66 GSTOT GSFMA138
Experiment 1 2 3

Beam 28Si 32S 36Ar
Beam energy 122 MeV 130 MeV 134 MeV
Target 0.5 mg/cm2 40Ca 0.5 mg/cm2 28Si 0.2 mg/cm2 28Si
Compound nucleus 68Se 60Zn 64Ge
Lmax 47h̄ 41h̄ 43h̄
Channel 3α 2p2n 2α
Equipment:
Gammasphere 103 detectors 78 detectors 77 detectors
Heaviemets no no no
BGO — — yes
Microball 95 elements 95 elements 16 elements
LuSiA — — 2048 pixels
Neutron Shell — 30 detectors 30 detectors
FMA — — yes
Ion chamber — — yes

Table 3.1: Details of the fusion-evaporation experiments which the present work is
based on.

The analysis procedure, results and interpretation of experiment 1 and 2 are dis-
cussed in Sec. 4. The analysis of these experiments started from so called Eγ-Eγ

matrices (c.f. Sec. 4.1.1). The aim of this analysis was to study the doubly magic
nucleus 56Ni. The experimental results from the anaysis of these two experiments
are shown in Sec. 4 and compared to large scale shell model calculations in Sec. 4.2.

Experiment 3 is one of the most complex experiments performed with Gammasphere
and the data set taken is one of the largest from a fusion-evaporation reaction. The
experiment was approximately two weeks long, and took place during the spring
of 2004. From Tab. 3.1 it can be seen that the data signals collected come from
Gammasphere Ge- and BGO elements, Microball, LuSiA, the Neutron Shell, the
FMA, and the Ion Chamber. About 360 Gigabytes of data was taken.

The main purpose of experiment 3 was to study the angular distribution of parti-
cles emitted in the so called prompt particle decay (c.f. 2.3) but also to study exotic
neutron deficient nuclei in the A ∼ 60 region.
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The data handling of experiment 3, has been performed by three PhD students.
The calibration of Gammasphere and the BGO detectors has been done by D. Tor-
res [25]. The Neutron Shell, the FMA and IC has been handled by L-L. Andersson
[26]. The author has calibrated LuSiA and Microball. At the moment of writing
(November 2006) a complete code, to handle all of the signals from the detectors
during the experiment is being constructed. A brief overview of the data handling
performed for the different detectors is given here. For detailed descriptions the
reader is referred to Refs. [25, 26] and Sec. 5.

• The Ge-detectors

To gain match the Ge-detectors standard γ-ray emitting sources were used;
152Eu and 56Co. A third order polynomial was used, to convert the measured
signals into energy. Since the beam provided by the ATLAS facility at Argonne
National Laboratory is pulsed with an 80 ns pulse, all of the Ge-detector time
signals could be aligned to the beam pulse. Unlike the sources, the residual
nuclei γ decay in flight. The emitted γ-rays are thus Dopper shifted. A second
order Doppler correction term was used

Eγ = Eγ0

(
1 + βcosθ + β2(cos2θ − 0.5)

)
(3.5)

where β is v/c and θ is the angle between the γ ray and the recoil nucleus
direction.

• The BGO detectors

The BGO detectors were also gain matched using 56Co. A second order poly-
nomial was found to give an accurate transformation from the measured values
to the energy. The BGO detectors were time aligned in the same way as the
Ge-detectors. This is further described in Ref. [25].

• The Microball and LuSiA

Both Microball and LuSiA were gain matched using an α decaying source and
a beam of protons impinging on a 12C target. The calibration of LuSiA is
described in Sec. 5 and Microball was calibrated in a similar way. To identify
the charged particles in Microball, a pulse shape technique was used. This is
discussed in Ref. [26].
In LuSiA the charged particles are identified using ∆E-E matrices. In Sec. 5
an example of the separation between the protons and α-particles is given in
Fig. 5.15 (a).

• The Neutron Shell

To separate neutron signals from γ ray signals in the neutron detectors, a
pulse-shape technique was utilised. The signals taken from the neutron de-
tectors were combined in different matrices to create an optimum separation
between the neutrons and γ rays. For the neutrons an energy calibration is
not performed, as it is only necessary to have a positive identification of the
evaporated neutrons.
If in the same event, neutrons are detected in adjacent detectors, the event is
disregarded as it is considered to be one neutron scattering from one detector
to the next. This two neutron suppression is described in Ref. [26].
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• The FMA and IC

The residual nuclei separated in the FMA are focused onto the focal plane
detector at the end of it. The focal plane detector will provide a determination
of the mass to charge ratio. Next the residual nucleus enters the ion chamber,
where it will lose energy. Since the anode of the IC is split, the different energy
loss signals, which are proportional to the number of protons in the nucleus,
can be combined to obtain an optimum separation between the different nuclei.
This process is further described in Ref. [26].

• Event-by-event Doppler correction

The compound nuclei will have a momentum vector in the beam direction due
to the kinematics of the reaction. When the compound nucleus evaporates
particles, a small recoil is given to the residual nucleus. By measuring the
energy of the evaporated particles and the struck pixel/element reveals the
angle, it is possible to reconstruct their momentum. This in turn allows for
a correction to the recoil vector of the the residual nuclei. The energy of an
evaporated particle in the center of mass system is given by

Ecm = Elab + Ekin − 2
√
ElabEkincosθ (3.6)

where Ekin is the kinetic energy of particles at the time of evaporation. θ is the
angle between the beam direction and the detector element/pixel. When the
recoil vector of the residual nucleus is accurately known, a better resolution
of the measured γ-ray peaks can be obtained. As the angle θ is the angle
between the event-by-event recoil vector and the detector, rather than between
the beam line and the detector. This procedure is described in Ref. [25].

To obtain with certainty the energy of the evaporated particles, both the
measured energy in the detectors and the angle have to be accurately known.
The method of how to obtain the energy and the angle for LuSiA is discussed
in Sec. 5.

• Sorting

The last stage of the data handling consists of sorting the γ-rays associated
with an identified residual nucleus into various one dimensional spectra and
Eγ −Eγ matrices. From the matrices it is possible to construct level schemes,
which is described in Sec. 4.1. Finally, from these nuclear structure physics
can be derived.
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Chapter 4

The doubly magic nucleus 56Ni

The doubly magic N = Z = 28 nucleus 56Ni has been investigated experimentally
with two fusion-evaporation reactions which are described in Sec. 3.3 and in Paper
1. The results discussed in this chapter include a significantly extended level scheme
of 56Ni (Sec. 4.1) which is compared to large scale shell-model calculations in the fp
shell (Sec. 4.2).

4.1 Experimental results

Fusion-evaporation reactions using Gammasphere in conjunction with ancillary de-
tectors create huge amount of data signals. A certain portion of this data is written
to tape on an event-by-event basis. Typically for experiments like these ones a
few billion events are written to tape, which corresponds to hundreds of Gigabytes.
This huge amount of data requires careful handling to achieve the desired quantity;
a specific nucleus along with its γ-rays. For more information on the data handling,
the reader is referred to Refs. [27, 28]. The experimental results concerning 56Ni are
given in Paper 1. In Sec. 4.1.1 and Sec. 4.1.2 it is briefly described how these results
were obtained.

4.1.1 Coincidence spectroscopy

To create an experimental level scheme of 56Ni, Eγ − Eγ correlation matrices were
created. In these, it is possible to select or gate on one specific γ-ray energy on
one of the Eγ axes and project it out onto the other axis. The spectrum created
in this way reveals which γ rays are in coincidence with each other. In the upper
part of Fig. 4.1 an example of a coincidence spectrum is shown. It is gated on the
6+ → 4+ → 2+ → 0+ yrast cascade in a 3α-gated γγ coincidence matrix, which
corresponds to the residual nucleus 56Ni created in experiment 1(c.f. Sec. 3.3). All
of the transitions seen in this spectrum are in coincidence with the transitions gated
on. To see in more detail which γ-rays are in coincidence, a gate can be put on
any of the transitions. For example, the spectrum obtained if a gate is put on the
1055 keV transition is shown in the lower part of Fig. 4.1. It displays the γ-rays
in coincidence with the 1055 keV γ-ray. Taking into account the relative intensity
of the transitions, it is possible to determine in which order the γ-rays are emitted.
Hence by gating in Eγ −Eγ matrices and measuring the intensity of the coincident

27
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Figure 4.1: Top: The coincidence spectrum created by gating on the 6+ → 4+ →
2+ → 0+ yrast cascade in 56Ni. Bottom: The coincidence spectrum for the 1055
keV transition. The peak marked with a star, is the 2+ → 0+ transition in the
contaminating 2p2n channel, which corresponds to 58Ni.
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γ rays, it possible to construct a level scheme of the excited states in 56Ni. The level
scheme resulting from the present study is displayed in Fig. 4.2.
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Figure 4.2: The experimental level scheme obtained from the analysis of experiments
1 and 2. In total some ∼ 20 γ rays have been added to the level scheme with respect
to Ref. [17]. The thicknesses of the arrows correspond to the relative intensity of the
transitions, and the energies are given in keV. This is the level scheme presented in
paper 1.

In Fig. 4.3 the summed intensity for all even yrast levels versus excitation energy,
for experiment 1 (experiment 2) is shown in the black (red). From the figure the
difference between the two experiments becomes apparent. In experiment 1 more
excitation energy is present in 56Ni, leading to more high-spin states. In experiment
2, 56Ni is produced at a lower excitation energy, hence providing low energy states.
This difference between the two experiments is also seen in Table 1 of paper 1, which
shows the experimental level energies, the γ-ray transition energies, as well as the
spin parity of the initial and final states. It is also what could be expected based on
the Lmax values displayed in Tab. 3.1.
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Figure 4.3: The summed intensity for all even yrast levels as a function of energy
for experiment 1 (black curve) and for experiment 2 (red curve), for 56Ni.

4.1.2 Spin and parity assignments

To determine the spin of the excited levels in 56Ni intensity ratios were used. It
reveals the relative angular momentum between two states. The ground state spin
and parity of 56Ni is known as 0+, it is thus possible to determine the spin and parity
for the rest of the levels relative to the ground state with the help of R30/83.

In fusion-evaporation reactions the compound nucleus has an angular momen-
tum vector in a plane perpendicular to the beam axis. This so called spin alinement
is slightly destroyed in the process of particle evaporation and subsequent γ-ray
emission. The γ-rays emitted from a nucleus have specific angular momenta, and
their angular distributions are given by the spherical harmonics. Hence the mea-
sured angular distribution at different angles relative to the beam axis allows their
multipolarity to be determined.
For experiment 1 and 2, the Ge-detectors placed at 30◦ and 83◦ were used to deter-
mine the intensity ratio, R30/83;

R30/83 =
I(γ 30◦)

I(γ 83◦)

In Fig. 4.4 the angular distribution for a ∆I = 1 and a ∆I = 2 transition is displayed
for a full spin alinement. As the spin alinement is destroyed by evaporated particles,
it is expected that stretched ∆I = 2 transitions have R30/83 ∼ 1.2 and stretched
∆I = 1 transitions have R30/83 ∼ 0.8. Significant deviations from these values can
be an indication of a mixed transition. Thus by measuring the intensity for the
γ-rays at different angles, the R30/83 can be obtained, allowing the spin difference
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Figure 4.4: The angular distribution for a ∆I = 1 and a ∆I = 2 γ-ray transition,
from a fully aligned residual nucleus.

between two excited states to be determined.

To deduce the parity of the nuclear states, the character of the γ-ray transitions
has to be determined. Here we make use of the fact stated in Sec. 2.2.1, that tran-
sitions of electric character are much more probable than transitions with magnetic
character, for a given multipolarity. If we assume that the lowest permitted mul-
tipole dominates it implies that the parity conserving ∆I = 2 transitions are E2
transitions and that parity breaking ∆I = 1 transitions are E1 transitions.

The spin and parity of the excited states of 56Ni were determined in this fashion.
The assignments are included in the experimental level scheme of 56Ni, see Fig. 4.2
and in Table 1 of Paper 1.
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4.2 Shell model interpretation

To compare the experimental results with theoretical results large-scale shell-model
calculations were performed. The shell model code ANTOINE [7, 8] was used, with
the KB3G [9] interaction and the GXPF1 [10, 11] interaction. The full fp space was
utilised, including the 1f7/2 orbital below the N = Z = 28 shell gap and the 2p3/2,
1f5/2 and 2p1/2 above it.
In Sec. 4.2.1 the level energies for the different calculations are described, in Sec. 4.2.2
the occupation numbers are discussed and the pure particle hole excitations are
presented in Sec. 4.2.3. The effect on the level energies by including the Coulomb
force is considered in Sec. 4.2.4 and the transition probabilities are surveyed in
Sec. 4.2.5.

4.2.1 Level energies

Figure 4.5 compares the experimental even spin yrast states up to Iπ = 10+ with
the calculated level energies, for different numbers of allowed excitations, t. The
interaction used to produce the level energies was either GXPF1 or KB3G without
Coulomb effects included. The dimensions of the calculation dramatically increases
when t increases. They are given in Fig. 4.5 and further increases to 1.1·109 for an
unrestricted calculation, i.e., t = 16 [29]. The figure shows that the experimental
level energies are best described by the t = 6 calculation for GXPF1 interaction. It
is possible that t > 6 would be even better. However, it is not feasible to perform
calculations with t ≥7 with the computers available in the Nuclear Structure Group
at Lund University. According to Ref. [9], t = 5 is enough to describe the most
relevant states. However Ref. [29] claims that t = 10 is necessary to have a good
reproduction of the experimental states.
The KB3G interaction cannot reproduce the experimental level energies very well
even with t = 6. Especially noteworthy is the 2+ state, which according to the
KB3G interaction should have an energy of 4.33 MeV. The experimental energy for
this level is 2.70 MeV. The poor agreement persists for the other excited states as
well. From the figure it is evident that GXPF1 is quite successful in describing the
experimental level energies. The largest discrepancy between the GXPF1 results
and the experimental values appears for the 8+, 10+ and 12+ states, with the en-
ergy difference between the experimental and calculated 12+ amounting to some 0.5
MeV.
The energy of the first 2+ state in 56Ni is rather low compared to other doubly magic
nuclei. For instance, in 40

20Ca20 the first excited state has an energy of 3.9 MeV. One
signature of a doubly magic nucleus is a high excitation energy of the first excited
state, so comparably 56Ni may not be a good doubly magic nucleus.
For a comparison between non-yrast experimental and theoretical level energies cal-
culated by GXPF1 the reader is referred to paper 1, figure 6.

In absolute values the ground state energy of 56Ni calculated with GXPF1 is
-206.3 MeV for t = 6. From the measured ground state mass, the binding energy
of the ground state is calculated to -501 MeV. Hence GXPF1 can reproduce the
relative level energies, it cannot reproduce the absolute values.
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Figure 4.5: Comparison between the experimental yrast level energies and the calcu-
lated level energies for t = 2, 3, 4, 5, and 6, for even spin values up to Iπ = 10+ using
GXPF1. The results for a t = 6 calculation using KB3G is also included. Clearly
GXPF1 is better at reproducing the experimental level energies than KB3G.
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4.2.2 Occupation number

Figure 4.6 displays the occupation of the fp shells as a function of spin. Once more,
only the yrast states are included. It is noteworthy that the ground state of 56Ni,
according to the calculation, has ∼ 15 nucleons in the 1f7/2 orbital. In its ground
state 56Ni is supposed to fill the 1f7/2 orbital completely, forming a closed proton and
neutron shell. It is surprising that approximately one particle is ”excited” already
in the ground state. This excitation is mainly present in the 2p3/2 orbital.
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Figure 4.6: The theoretical nucleon occupation number as a function of spin for the
fp orbitals, using the GXPF1 interaction, considering only the yrast spin states.

In recent articles it has been discussed if 56Ni is a good doubly magic nucleus,
i.e., if the N = Z = 28 shell gap is large enough in energy to be called a shell gap.
This can be yet another indication that 56Ni is not a purely closed shell nucleus even
in the ground state.

The first 2+ state, has an occupation of about 14 particles in the 1f7/2 orbital.
Comparing this to the ground state, it is tempting to imagine that this excited state
is created by one additional particle-hole excitation on top of the generic one-particle
one-hole ’noise’ level of the ground state. This particle is at first predominantly in
the 2p3/2 orbital. Combining a hole in the 1f7/2 orbital with a particle in the 2p3/2

orbital, the possible excited states are 5+, 4+, 3+ and 2+. Indeed, the occupation
numbers are very similar for the these states. However, with the above combination,
it is not possible to create a 6+ state. Here it favourable to create the excited state
with predominantly an 1f5/2 particle. The remaining yrast states seem to be created
by larger number of proton and neutron excitations.
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4.2.3 Pure particle hole excitations

The energy levels obtained with t′ particles excited from 1f7/2 to the upper fp shell
are displayed in Fig. 4.7. The calculated energy levels for t = 6 using GXPF1 is
included as a reference as well as some experimental levels. The experimental level
energies are shifted so that the calculated and experimental 2+ levels have the same
energy.

The t′ = 1 spectrum is very similar to the t = 6 spectrum, if the difference in
ground state energies is neglected. It is also very similar to the experimental yrast
6+ → 4+ → 2+ cascade. This implies that the first three excited yrast states are
build up by one-particle one-hole excitations, in agreement with the argument in
Sec. 4.2.2.
The t′=2 spectrum has a vibrational character. This is indicated by the nearly con-
stant energy difference between the first 0+, 2+ and the 4+ states. However, there
are no experimental levels corresponding to these theoretical vibrational states in
the present analysis.

The energy of the first four levels calculated using t′ = 4 are 0, 0.567, 1.670, and
3.113 MeV. The energy for a rotating quantum object is

E =
h̄2

2ξ
I(I + 1)

where ξ is the moment of inertia and I is the angular momentum. When the
angular momentum of the nucleus increases the rotational energy also increases.
The energy levels are said to form a rotational band. Assuming that the first four
states calculated by t′=4 form a rotational band, the factor ( h̄2

2ξ
) can be calculated

through

E(0+) = 0

E(2+) = 6 · ( h̄
2

2ξ
) = 0.567 MeV

E(4+) = 20 · ( h̄
2

2ξ
) = 1.67 MeV

E(6+) = 42 · ( h̄
2

2ξ
) = 3.113 MeV

It is for the 2+, 4+ and 6+ states 0.095, 0.084 and 0.074 MeV. The factors are
sufficiently similar to conclude that the pure 4p-4h excitations form a rotational
band. For comparison, the same factor is calculated for the experimental yrare
energy levels;

E(0+
3 ) = 0

E(2+
2 ) = 6 · ( h̄

2

2ξ
) = 0.35 MeV

E(4+
2 ) = 20 · ( h̄

2

2ξ
) = 1.33 MeV
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Figure 4.7: The pure t′p-t′h excitation spectra, for t′ = 0, 1, 2, and 4. For com-
parison the calculation using t = 6 and some experimental levels are included. The
experimental level energies are shifted to concur with the calculated 2+ energies.
The dotted line corresponds to a known 0+ state, which is not observed in these
experiments. The 2p-2h excitations display a vibrational character and the 4p-4h
excitations form a rotational band.
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E(6+
2 ) = 42 · ( h̄

2

2ξ
) = 2.65 MeV

with the experimental energies scaled to the known 0+
3 state with an excitation

energy of 5.00 MeV. This third 0+
3 state was not seen in the present analysis. The

( h̄2

2ξ
) factors of 0.058, 0.067 and 0.063 MeV are obtained. Hence, it seem like the

experimental states also form a rotational band.
The presence of a rotational band, implies that 56Ni is deformed, as rotation in a
quantum spherical object is not observable. In fact two deformed rotational bands
are known in 56Ni, these are shown in Paper 1.

4.2.4 Coulomb effects

The Coulomb interaction can be included in the shell model calculations by modify-
ing the single-particle energies and two-body matrix elements. These are increased
or decreased to mimic the effect of the Coulomb force in the nucleus. Figure 4.8
displays the difference between the calculated and experimental level energies, for
the different Coulomb contributions. The pure GXPF1 result is also included. The
figure shows that when the different Coulomb interaction contributions are included,
the accuracy of the calculation decreases, which is a bit of a surprise.
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Figure 4.8: The difference between the calculated and experimental level energies,
including varying Coulomb effects. Only even spin yrast states are considered, and
up to 6p-6h excitations were allowed. The discrepancy between the calculated and
experimental level energies increases when the isospin symmetry breaking effects are
included.
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The black curve is obtained by using the GXPF1 interaction modified to include
the electromagnetic spin orbit interaction. Considering that the 1f7/2 (2p3/2) orbital
corresponds to a j = l + s orbit and that its partner is the 1f5/2(2p1/2) orbit cor-
responding to j = l − s, the spin orbit coupling can be an important factor in the
nucleus, since excitations between these orbits is usual.
The red curve in Fig. 4.8 is calculated by including a radial term, Vr in addition to
the electromagnetic spin orbit interaction. The radial term, sometimes called the
Thomas-Ehrman shift, corresponds the change of the radius when the nucleons are
excited from one orbit to another. The excitation will affect the charge distribution
of the nucleus, and this in turn changes the level energies in the nucleus. The Vr

contribution is sensitive to if protons or neutrons are excited. Both the electromag-
netic spin orbit term and the radial term are discussed in more detail in Ref. [13].
The green curve in Fig. 4.8 includes the electromagnetic spin orbit interaction, the
radial term and a charge symmetry breaking term, BM . The BM term corresponds
to a charge symmetry breaking component of the strong force, i.e., the strong force
does not affect the protons and neutrons equally. Strictly seen this effect is not a
Coulomb effect, but like the Coulomb force it breaks isospin symmetry. The charge
symmetry breaking term is discussed at length in Ref [30] and is therein shown to be
present in several fp shell nuclei. However, including it in this calculation increases
the deviation from the experimental results.

It is possible that Fig. 4.8 reflects the difficulties in separating the different forces
inside the atomic nucleus. This is especially important since GXPF1 is an inter-
action partially fitted to experimental level energies. These experimental data are
taken from nuclear levels created by a combination of the strong force and Coulomb
force. Hence it is possible that the original GXPF1 interaction already contains
an implicit dependence on the Coulomb force. Thus, to explicitly include Coulomb
effects by changing the single-particle energies and two-body matrix elements, too
large effect are simulated. This could be the explanation for the decreasing accuracy
of the calculation as the Coulomb effects are included.

To further investigate this phenomenon, the level energies were calculated for
the KB3G interaction including the Coulomb interaction. The result is presented
in Fig. 4.9. On average the difference between the calculated energy levels and the
experimental level energies decreases when the isospin symmetry breaking effects
are included in the KB3G interaction. Consequently, by including these effects here
the experimental results are relatively better reproduced. While KB3G includes
experimental single-particle energies and a small mass dependence, it is not fitted
to experimental ground-state energies or level energies as GXPF1 is. This implies
that it in some sense is a more ’pure’ interaction than GXPF1. The results showed
in Fig. 4.9 could be taken as evidence for this.

A currently popular field of research in nuclear structure physics are mirror nu-
clei. Mirror nuclei have their number of protons and neutrons interchanged, for
instance 57

29Cu28 and 57
28Ni29. If the strong force is considered to be charge indepen-

dent, the only difference between excited states in a mirror pair, should be due to
the Coulomb force. It is not uncommon to study Coulomb effects in mirror nuclei
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Figure 4.9: The difference between the calculated end experimental level energies,
for the KB3G and GXPF1 interaction both with and without Coulomb effects. The
agreement between the calculated and experimental level energies increases when
the isospin symmetry breaking effects are included for KB3G.

with the help of shell model calculations, sometimes using GXPF1 including various
Coulomb effects. Considering the above results, the benefit of studying mirror nuclei
with GXPF1 both with and without Coulomb effects is questionable.

4.2.5 Transition probabilities

Using ANTOINE the electromagnetic transition probabilities were derived. The re-
duced transition probabilities, the B(E2) and B(M1) values were calculated using
the bare g-factors. The gs and gℓ are 5.586 respective 1.0 for protons and -3.826
respective 0.0 for neutrons. Standard effective charges of 1.5e and 0.5e for protons
and neutrons respectively were used. The use of standard effective charges rather
than effective charges will not change the results, as no Coulomb effects were consid-
ered in these calculations. Hence, the wave functions are completely symmetric for
the proton and neutron partitions. The branching ratios, b, were calculated using
the above. The results are presented in table 2 of paper 1, where the experimental
and theoretical branching ratios are given. The theoretical values were obtained
from a calculation using t = 6 and the GXPF1 interaction without any Coulomb
effects included. As seen in the table the experimental branching ratios are very
well described by the theoretical calculation but with one very notable exception:
The calculation fails to predict the feeding and decay pattern of the yrast and yrare
8+ states.
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The yrast and yrare 8+ states

To the left in Fig. 4.10 a section of the experimental level scheme is shown and in the
middle is the level scheme predicted by the shell model calculation using GXPF1.
Obviously a significant difference exists between the experimental and theoretical
level schemes. However, the theoretical level scheme displayed to the very right in
Fig. 4.10 is very similar to the experimental level scheme.

1
21

2

(c)(a) (b)

Figure 4.10: Panel (a) displays the relevant section of the experimental level scheme
and panel (b) displays the decay pattern given by the shell model calculation. To the
very right, panel (c) displays the level scheme obtained when the yrast experimental
level is associated with the second calculated 8+

2 and vice versa.

This level scheme was obtained by associating the experimental yrast 8+ state
with the second calculated 8+ state and vice versa. It thus seems like the shell model
calculation places the experimental yrast 8+ state as the second calculated 8+ state
and vice versa. The reason for this inversion is due to the wave function of the 10+

1

which prohibits an E2 transition into 8+
1 but allows an E2 transition into 8+

2 , this
is discussed further in Paper 1.
Several calculations have been performed to investigate if this failing is specific for
the GXPF1 interaction, or if it persists for KB3G as well, the results are presented in
Tab. 4.1. Table 4.1 also includes branching ratios obtained from a calculation using
GXPF1a. The branching ratios were calculated from results obtained by Ref. [31]
using t=8 without any Coulomb effect included. Though the inversion of the yrast
and yrare 8+ states still remain, GXPF1a reproduces the experimental decay pat-
tern very accurately. It has been reported that the inversion of the 8+ states still
exists for a full fp shell calculation using GXPF1a in Ref. [29].
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Eγ Iπ
i Iπ

f Eγ bexp btheo btheo btheo

(keV ) (h̄) (h̄) (keV) GXPF1 KB3G GXPF1a

5316 6+
1 4+

1 1392 1.0 1.0 1.0 n.a.

7954 8+
2 6+

1 2638 0.94(1) 0.92 0.94 0.93
6+

2 1304 0.07(1) 0.08 0.05 0.07
8224 8+

1 6+
1 2908 1.0 0.52 0.10 0.94

6+
2 1574 n.o. 0.37 0.62 0.06

7+
1 623 n.o. 0.11 0.28 n.a.

9418 10+
1 8+

1 1194 n.o. 0.00 0.03 0.01
8+

2 1463 1.0 0.99 0.97 0.99
10677 10+

2 8+
1 2453 1.0 0.73 0.21 0.88

8+
2 2723 n.o. 0.15 0.04 0.10

9+
1 1667 n.o. 0.06 0.57 n.a.

12359 12+
1 10+

1 2940 0.75(3) 0.86 0.58 n.a.

10+
2 1681 0.25(3) 0.12 0.05 n.a.

11+
1 938 n.o. 0.01 0.37 n.a.

Table 4.1: Comparison between the experimental and theoretical branching ratios,
b, for GXPF1, KB3G using t=6, and a t=8 calculation performed by Ref [31] using
GXPF1a. These branching ratios were calculated assuming the inversion of the
8+ yrast and yrare states. Clearly all calculations invert these two states. The
calculation using GXPF1a obtains results most similar to the experimental values.
The branching ratios marked n.o. were not observed in the present analysis, and
transitions marked n.a. were not available from Ref. [31].

The inversion of the 8+ states remains for the KB3G calculation as well. This is
clearly seen in the branching ratio of the calculated 10+

1 state. It is noteworthy that
KB3G cannot reproduce the decay pattern of the 12+

1 state, nor the decay of several
of the other states.

Transition probabilities using KB3G

The branching ratios for the KB3G interaction were used to produce a predicted
level scheme of 56Ni. The relevant part of it is shown in Fig. 4.11. Clearly the
experimental decay pattern is not well reproduced by the KB3G interaction, for
states above spin parity 6+. Especially noteworthy is the predicted decay of the
11+

1 state and the 10+
2 , which typically decay with strong E2 transitions, but here

prefer M1 transitions. The same is valid for the 12+
1 transition which has a much

stronger decay branch into the 11+
1 level than the second 10+

2 level, which again
favours the M1 transition over the E2 transition. To investigate this, the con-
figurations creating these excited states were studied. In Tab. 4.12 the dominating
configurations for some excited states are shown. The reason behind the peculiar
decay pattern predicted by KB3G is seen in the table. For instance the dominating
configuration forming the 12+

1 state has two holes in 1f7/2 and two particles in 1f5/2.
This configuration has the strength 33% in the 10+

1 state and only 11% in the 10+
2
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Figure 4.11: The decay pattern of 56Ni as predicted by the shell model calculation
using KB3G. Clearly the experimental decay pattern is not well reproduced.

Interaction State Fraction 1f7/2 2p3/2 2p1/2 1f5/2

Iπ %

KB3G 12+
1 61 14 0 0 2

11+
1 49 14 0 0 2

10+
1 33 14 0 0 2

10+
2 24 14 1 0 1

15 14 2 0 0
11 14 0 0 2

9+
1 24 14 1 0 1

15 14 2 0 0
4 14 0 0 2

GXPF1 12+
1 17 13 2 0 1

11+
1 20 14 0 0 2

10+
1 25 14 0 0 2

10+
2 21 13 3 0 0

9+
1 19 14 2 0 0

Figure 4.12: The fractions for the dominating configurations for some levels in 56Ni,
calculated with the KB3G interaction. The dominating configurations for the same
states calculated by GXPF1 are also included. The wave functions are symmetric
in their proton neutron partitions as the Coulomb force was not included in these
calculations.
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Figure 4.13: The nucleon occupation number for the different fp orbitals calculated
using KB3G. Comparing these results to the occupation numbers obtained from
GXPF1 in Fig. 4.6, it is seen that the 1f5/2 orbital is more favoured using KB3G
than GXPF1.
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Figure 4.14: The nucleon occupation number for the 1p3/2 and 1f5/2 orbitals calcu-
lated using KB3G in the black respective the red curve, using GXPF1 in the green
curve respective the blue curve The region enclosed by dotted lines displays the
greatest discrepancy between the predicted occupation numbers for the two inter-
actions.
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state. However, the 11+
1 is to 49% made up of this configuration. Thus it is more

favourable to decay into the 11+
1 state than the 10+

2 state. The same argument can
be used to explain the decay of the 11+

1 into the 10+
1 state, the dominating config-

urations are the same for these two states. The 9+
1 however, only has 4% of their

leading configuration.
Comparing the configurations from KB3G and GXPF1, it is seen that the domi-
nating configuration is predicted to be the same only for the 10+

1 and 11+
1 states.

According to KB3G the 12+
1 state has a very strong component of 61% of two holes

in 1f7/2 and two particles in 1f5/2.The same state, has according to GXPF1 a much
more mixed wave function, with a leading configuration of only 17% consisting of
three holes in 1f7/2, two particles in 2p3/2 and one particle in 1f5/2. The largest dif-
ference in the leading configurations for the states displayed in Tab. 4.12 all seems
to involve the 2p3/2 and 1f5/2 orbitals.
In Fig. 4.13 the occupation numbers for the fp orbitals using KB3G are shown.
Comparing this figure to the corresponding Fig. 4.6 obtained by using GXPF1, it is
seen that the 1f7/2 occupation numbers are quite similar for the two interactions as
well as the occupation of the 1p1/2 orbital. However, the occupation of the 1p3/2 and
1f5/2 orbit are different in the two calculations. To highlight this, the occupation of
the 2p3/2 and the 1f5/2 orbitals are included in Fig. 4.14 calculated by either KB3G
or GXPF1. While the numerical values for the occupation differs in the two results,
the general behaviour of the occupation numbers is almost alike, except for Iπ =
10+, 11+ and 12+. For instance, the predicted occupation of the 2p3/2 decreases
(increases) for KB3G (GXPF1) between 10+ ≤ Iπ ≤ 12+.
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Figure 4.15: The single-particle energies used in the GXPF1 and KB3G interaction,
in MeV.
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The significant difference between the predicted level schemes using KB3G and
GXPF1, can depend on both the single-particle energies and the two-body ma-
trix elements. The single-particle energies for KB3G and GXPF1 are illustrated
in Fig. 4.15. The figure shows that the single-particle energies in KB3G are more
’compressed’ than in GXPF1. To promote a particle from 1f7/2 to 2p3/2 in GXPF1
(KB3G) some 2.9 (2.0) MeV is necessary. This could be the explanation why the
dominating configurations calculated by GXPF1 favours excitation into the 2p3/2

more than KB3G does. It is also noteworthy that the biggest difference between
the single-particle energies between GXPF1 and KB3G exists precisely for the 2p3/2

orbital. So for the KB3G interaction to achieve a high level energy it is necessary
to excite nucleons into the 1f5/2 orbital, whereas GXPF1 can excite into the 2p3/2

orbital and still have enough excitation energy. However, as the occupation num-
bers for most of the other state show a similar behaviour for all orbitals and in both
calculations, perhaps the problem is not in the single-particle energies, but rather
in the two-body matrix elements. Here the solution of the problem may lie in the
two body matrix elements between the 1f7/2 and 2p3/2 respective 1f5/2 orbitals.

The reason for the poor reproduction of the experimental results for KB3G re-
quires further theoretical work as does the peculiar inversion of the yrast and yrare
8+ states which persists for the KB3G, GXPF1, and GXPF1a interactions even for
a full fp shell calculation [29].
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Chapter 5

The Lund University Silicon Array

In experiments using fusion evaporation reactions many different residual nuclei are
produced. To clearly and unambiguously identify the reaction products, detection
and identification of evaporated particles is crucial. This was one of the reasons why
a state of the art charged particle detector, LuSiA - the Lund University Silicon
Array - was created.
The other reason was a new fascinating decay mode displayed by some nuclei in the
A ∼ 60 region, namely the so called prompt particle decay (c.f. Sec. 2.3). This
decay has been observed in nuclei produced in fusion-evaporation reactions, where
highly deformed or even superdeformed mother nuclei decay by emitting protons or
α particles of discrete energies, into near spherical states in the daughter nuclei. To
detect with high accuracy both the energy and angle of the protons and α particles,
LuSiA has a large angular coverage and a high granularity. LuSiA was first utilised
during a heavy ion fusion-evaporation reaction experiment (c.f. 3.3), in this chapter
the design and calibration of LuSiA is discussed.

5.1 The strip detectors

LuSiA is a system of eight ∆E - E silicon strip telescopes. The use of ∆E-E
telescopes enables discrimination between different kinds of charged particles, for
example protons, deuterons, and α particles. The E detectors were bought from
the company RADCON. They have active areas of 61 mm × 61 mm in size and are
approximately 1 mm thick. The E detectors have 32 strips which are mutually com-
bined to yield 16 electronic channels. The ∆E detectors are based on the LASSA
type [32] and were purchased from the company MICRON. They are 50 mm × 50
mm in size, about 65 µm thin with 16 strips.
The surface of silicon detectors is covered by a dead layer consisting of aluminium.
The dead layer on the ∆E detectors is ∼ 0.2 µm thin. The E detectors have nomi-
nally 0.5 (1.9) µm dead layers on its front (back) side. The ∆E and E detectors are
arranged together in a specific geometry to form the Lund University Silicon Array
- LuSiA.

47
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(a) (b)

(c)

Figure 5.1: (a) The silicon wall consisting of four ∆E − E telescopes. (b) The
box detector holder and silicon wall placed inside the target chamber, without any
telescopes placed in the holder for the box. Notice that the target holder is placed
inside the box. (c) Trying to fit all of the cables inside the target chamber for the
full LuSiA array and two rings of the Microball detector.

5.2 Detector arrangement

LuSiA is designed to fit inside the target chamber at the germanium detector ar-
ray Gammasphere [19]. Gammasphere is currently placed at the Argonne National
Laboratory outside of Chicago in the United States of America. In essence, LuSiA
replaces the charged particle detector Microball [20].

Four of the eight telescopes form the so called wall. The wall, seen in panel
(a) in Fig. 5.1, covers the forward angles 5◦ < Θ < 40◦. The other four telescopes
form the so called box. The box, seen in panel (b) and (c) of Fig. 5.1, covers the
central section around the target (40◦ < Θ < 120◦). The most backward angles, i.e
130◦ < Θ < 170◦ were covered by a remaining, small section of Microball, which
is also seen in panel (c) of Fig. 5.1. This set-up is ideal for reactions in inverse
kinematics, which means that a heavier projectile nucleus impinges on a target con-
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Figure 5.2: The set-up of LuSiA at Gammasphere with two rings from Microball
shown in yellow. The ∆E(E) detectors are shown in purple (green). The beam
enters from the left, hits the target and the reaction products exit through the exit
collimator into the Fragment Mass Analyser (FMA). Picture courtesy of D. Rudolph.

sisting of lighter nuclei. This causes the reaction products to be strongly forward
focused due to the conservation of momenta. Hence it is intended that the prompt
protons primarily will be detected by the wall.

A code to simulate the response of LuSiA to evaporated particles from a given
reaction was developed. It estimates the charged particle detection efficiency de-
pending on the geometry defined by the relative position of the target and the box,
D, and the energy thresholds of the ∆E and E detectors. The parameter D is
displayed in the center of Fig. 5.2.
If D = 0, the target and box are lined up such that the box covers angles less than

90◦. To place the target in the middle of the box, D has to be 2.5 cm. The energies
and angles of the evaporated particles were taken from a preceeding Monte Carlo
simulation of the reaction process. In panel (a) of Fig. 5.3 the minimum detection
energies of protons and α-particles are displayed, for Ethreshold(∆E) = 0.2 MeV and
Ethreshold(E) = 0.5 MeV and D = 1.5 cm for pixels at Φ ∼ 20◦ as a function of Θ.
The discontinuity in the curves at Θ ∼ 40◦ corresponds to the transition between
the box and the wall. The minimum detection energy in the laboratory frame for
protons (α - particles) is almost constant at ∼ 4 MeV (∼ 15 MeV). In the center-of-
mass frame this corresponds to increasing particle energies, as is seen in the figure.
The dashed horizontal lines illustrate typical center-of-mass energies for the prompt
particle decays. In this set-up, the detection region for them is from Θ ∼ 40◦ to
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Figure 5.3: (a) The critical energy of α particles (purple curves) and protons (black
curves) for the lab system and the center of mass (c.o.m) system. (b) The detection
efficiency for protons for varying target positions, as a function of the threshold
energy of the ∆E detector. Picture courtesy of D. Rudolph.

∼ 90◦. In Fig. 5.3 (b) the simulated proton detection efficiencies as a function of
the energy thresholds of the ∆E detector for a number of distances is shown. For
protons the distance D = 2.0 cm provides the highest proton detection efficiency,
whereas for α particles (not shown in Fig. 5.3 (b)), smaller values of D are prefer-
able. A reasonable compromise between the two results in D = 1.5 cm.

The results from the simulations form the basis for the geometrical set-up of Lu-
SiA used in the present experiment. A side view of this set-up is shown in Fig. 5.2
with the beam entering from the left. The ∆E detectors are shown in purple and
the E detectors are illustrated in green. The two rings of Microball (MB) are shown
in yellow to the left in the picture. Not included in this figure are the absorber foils,
which are placed in front of the ∆E detectors during the experiment. The absorber
foils protect the detectors from being hit by heavy high energy particles, as these
damage the detectors. The absorber foils are further discussed in Sec. 5.6.5.
The holding structure of the LuSiA detectors is based on the Microball bar. It has
been developed and machined at Lund University and at Washington University in
St. Louis, U.S.A. LuSiA was mechanically put together at Washington University.

In the present configuration LuSiA has 8×2×16 = 256 electronic channels. These
can be combined to form 8×16×16 = 2048 pixels. In Fig. 5.4 the pixels of the box
and wall are displayed. Note that some of the pixels are hidden. For instance some
pixels in the wall are hidden by the box or by the holding frame of the wall, as it
is shown in Fig. 5.4. Some 1850 of the 2048 pixels were geometrically active for
detection of charged particles.

The high granularity of LuSiA makes it possible to precisely determine the mo-
menta of the evaporated particles and subsequently the momenta of the recoiling
nuclei prior to possible prompt particle decay. It is important to accurately know
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Figure 5.4: Schematic view of the telescopes of the box in panel (a) and the wall
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geometrically hidden by the box are crossed over, and pixels shadowed by the frames
of the printed circuit boards (PCB) are shown in pink. The yellow parts indicate
the frames of the PCB, which in addition are shadowed from direct hits of particles.
Picture courtesy of D. Rudolph.

the recoil vector in order to properly transform the particle and γ - ray energies mea-
sured in the laboratory system to the center of mass system. In fusion-evaporation
reactions, the spin axis of the produced nuclei is perpendicular to the plane spanned
by the beam axis and the recoil vector. This allows an event by event determination
of the spin axis which is vital for the study of angular distributions of the promptly
emitted particles.

5.3 Electrical set-up

Silicon detectors are semiconductor detectors consisting of crystalline materials.
When an ionising particle passes through the detector material electron-hole pairs
are created. The great advantage of these detectors is that the energy necessary to
liberate an electron-hole pair is very small. Thus, for a given energy many more
information carriers (electron-hole pairs) are created in this detector than in most
other types. This leads to a superior energy resolution. The electron-hole pairs are
separated from each other by an applied external electrical field. The electrons are
swept away to the anode and the holes to the cathode. The size of the signal is
proportional to the amount of ionisation caused by the incidenting radiation. The
signals obtained from silicon detectors are very small, thus it is necessary to pream-
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plify them before further processing. The preamplifier is ideally mounted as close
as possible to the detector (in order to minimize noise).

The signals from the ∆E and E detectors of LuSiA are taken out from the
target chamber by flat cables, which can be seen in the upper right part of Fig. 5.1
in panel (c). In this picture, the funnel used to guide the flat cables out from the
target chamber is also visible. The preamplifiers are housed inside a small tower,
just outside of the Gammasphere holding structure. The connectors of the flat
cables are glued to the PCB preamplifier boards in a vacuum feed-through. This
is necessary to not destroy the vacuum inside the target chamber. The signals
from the LuSiA preamplifiers are then sent to the Gammasphere electronics room
via shielded flat cables and processed there by a special 16-channel shaper unit
produced at Washington University. The shaper unit derives both energy and time
signals from the incoming pre-amplified signals. These signals are digitised in the
16-channel ADC and TDC unit, and sent in to the Gammasphere data acquisition
system. During the experiment LuSiA is used in a so called slave mode. This means
that when the trigger conditions are fulfilled the information from LuSiA is read out.
LuSiA does not contribute to the trigger set-up. Typically during the experiment 3
(c.f. Sec. 3.3) a combination of neutron and γ-ray signals was used as a trigger.

5.4 Determination of the angles of the pixels

The pixels are created by combining the electric channels from one ∆E and one E
detector together. The E strips are rotated 90◦ with respect to the ∆E strips, thus
creating pixels. Given the position of one pixel, the angles (Θ,Φ) for all pixels can
be determined. The position of the pixels is described by the Cartesian coordinate
system. The origin of the coordinate system is the target or, more specifically, the
beam spot in the center of the target.

To illustrate the process of determining the angles for the pixels, the upper left
telescope in the wall is used as an example in the following discussion. The ∆E and
E detectors are placed at different distances with respect to the target (see panel
(a) of Fig. 5.5): the ∆E detectors are placed at z = 68 mm from the target and the
E detectors are placed even further out. The first step is to project the position of
the E detectors onto the position of the ∆E detectors. This is important because,
for our example, the x position is given by the strips in the ∆E detector and the
y position is conversely given by the E detector strips. The z coordinate is the
position of the ∆E detector from the target, i.e. z = 68.0 mm. To properly create
pixels from these conditions, the E detectors have to be mathematically projected
onto the position of the ∆E detectors:

• The position of the first pixel depends on the middle position of the first strip
in the (i) ∆E detector, (ii) E detector and (iii) the ∆E distance from the
target. The middle position of the first E strip is projected onto the position
of the ∆E detector through;

y1 = −8.10 · 68.0

85.4
mm = −6.45 mm
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Figure 5.5: (a)For the top left detector in the wall, the ∆E detector is placed 68
mm from the target and the E detector is placed 17.4 mm further out. (b) The
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where the factor -8.10 mm corresponds to the distance in y direction from
origo to the middle of the first E strip, see Fig. 5.5 panel (b). The distance
68.0 (85.4) mm corresponds to the distance from the target to the ∆E (E)
detectors (see Fig. 5.5 (a).

• As the ∆E detectors have active areas of 50.0 mm and 16 strips, the width of
each strip in the x - direction is ∆x = 3.13 mm. The corresponding value for
the E detectors, which have an active area of 61.0 mm, is 3.81 mm. However,
seen from the ∆E detector position this number is modified to:

∆y = 3.81 · 68.0

85.4
mm = 3.04 mm

Thus the effective pixel size at the ∆E position is 3.13 mm × 3.04 mm.

Utilising these parameters it is possible to generate all the pixels through a code.
The position of the first pixel is used as the starting point. The first pixel in the
upper left telescope of the wall is displayed in turquoise in panel (b) of Fig. 5.5.
The code takes steps in, for instance, the y direction which are 3.04 mm long until
the middle of the last strip in the detector is reached. The program then jumps down
3.13 mm and steps another 16 steps which are 3.04 mm long and this continues all
over the detector. In this fashion the pixels of LuSiA were determined, each of the
eight telescopes consists of 256 pixels.

Once the x, y, and z positions of the pixels were known, the angles can be cal-
culated by using the transformation from the Cartesian coordinates to the spherical
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coordinates:

x = rsinΘcosΦ

y = rsinΘsinΦ

z = rcosΘ

It is necessary to know the angles for the pixels in order to properly calibrate LuSiA
and determine the momenta of the evaporated particles during the experiment (cf.
Sec. 5.2). The calibration of LuSiA was performed in many steps described in
Secs. 5.5 and 5.6. The calibrations utilise both an α decaying source and a beam of
protons impinging on a 12C target.

5.5 The alpha calibration

The α calibration was performed individually for the ∆E and E detectors. This is
due to the very short range of α-particles in matter. The ∆E detectors had to be
physically removed from the experimental set-up to enable the α particles to im-
pinge on the E detectors. However, the ∆E detectors in the box are very sensitive
and the mechanical set-up too delicate to be removed. Thus, it was not possible to
α-calibrate the E detectors in the box.
In the process of removing the ∆E detectors of the wall, one of the E detectors in
the wall was damaged. Thus, no α calibration was obtained for the lower right E
detector in the wall either.

Two transition energies from the decay of a 228Th source were utilised for the
calibration, namely the 5685.37 keV transition from 224Ra and the 8784.86 keV
transition from 212Po. These two transitions are suitable to calibrate after since
they are intense and span the energy region of interest well. When the α-particle
transverses the dead layer on top of the detector it will lose some energy. Therefore
it has a lower energy than the tabulated value when it enters the active area of the
detector. How much energy the α particle loses in the dead layer depends on its
initial energy and on the thickness of the dead layer. The latter will in turn depend
on the incident angle of the α particle.
To illustrate this effect, the upper left telescope in the wall is again chosen as an

example. The effective thickness, teff , of the dead layer in the wall is described by:

teff =
t

cosΘ

The nominal thickness, t, of the dead layer on the front side of the E - detectors in
the wall is 0.5 µm. The angle Θ varies over the detector area. It even varies within
the same strip, which is indicated in Fig. 5.5 (b). There pixel 1 and 241 are marked
together with their angles Θ1 = 35◦ and Θ241 = 10◦ . They belong to the same E
strip but the effective thickness for pixel 1 is:

t1 =
0.5 µm

cos35◦
= 0.61 µm
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Figure 5.6: The α calibration source, 228Th decays (among other) into 224Ra and
212Po. The energies of these two transitions were used for the calibration. Here seen
for two E detector strips (number 4 and 13, cf. Fig. 5.5) in the upper left wall.

and the effective thickness for pixel 241, t241, is 0.51 µm.
An α particle with an initial energy of 7.00 MeV will lose 68 (81) keV in the 0.51
(0.61) µm thin dead layer, i.e., α-particles with different energies will strike the ac-
tive area of the detectors.

It is impossible to know event-by-event where the α particle struck the strip.
Therefore the energy of the α particle is not well known and an average angle, Θ,
for each strip was determined, corresponding to the angle of the middle of the strip.
The average angle for the strips was used to calculate the average energy loss, Eloss,
by the α particles in the dead layer. The energy loss of α particles in the dead layers
was calculated by the code SRIM [33] (cf. Sec. 5.6 for an example of this). The
average energy deposited in the active area of the detector, Edet, is thus:

Edet = Etabulated −E loss

For strips far out in the detector the variation in Θ decreases as seen Fig. 5.5 (b).
Hence the approximation of an average angle works better for this region.
The energies deposited in the strips by the α - particles were recorded. Together
with the nominal energy, Edet calculated above, these were used to obtain the α
calibration coefficients (ai, bi) corresponding to a linear curve. For each strip the
coefficients transform the measured channel, C, into energy according to Eα = C ·ai

+ bi.
A calibrated spectrum of the 228Th source is displayed in Fig. 5.6 for two E strips
in the upper left detector in the wall. The small difference between the positions of
the peaks in the two spectra is due to the different energy losses in the dead layers,
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the turquoise (black) curve corresponds to E strip number 4 (13) in Fig. 5.5.

Prompt protons typically have a kinetic energy of about 7 MeV in the laboratory
system at the forward angles. Thus the energy region of interest is well spanned by
the α calibration for the E detectors. Given the same energy, protons have a consid-
erably longer range in matter than α particles. Thus, a proton with a kinetic energy
of 7 MeV will not be stopped in the ∆E detector. These protons will pass through
the ∆E detector and hit the E detector, where they will be stopped. Typically they
deposit 0.4 - 0.9 MeV in the ∆E detector and the remaining energy is deposited in
the E detector. It cannot be taken for granted that the energy response over this
energy interval (from ∼ 0.4 MeV to ∼ 8 MeV) is linear. Thus a proton calibration
is necessary to calibrate the ∆E detectors for low energies.

5.6 Proton Calibration

The proton calibration proved more difficult than the α calibration. The main prob-
lem was difficulties in focusing the beam and steering it through the 8 mm opening
hole in the LuSiA wall. This opening hole can be seen to the right in Fig. 5.2.
These problems caused the number of recorded protons for the calibration to be
small. Two proton calibrations were performed; with and without absorber foils
placed in front of the ∆E detectors. The first step in the proton calibration is to
determine the expected energy of the protons for a given pixel.

5.6.1 Determination of the proton energy

The proton calibration was performed by having a beam of protons impinging on a
thin 12C target. The protons either scatter elastically or inelastically on the target.
This gives rise to protons of two discrete energies striking the detectors. The protons
have an energy EΘ according to;

EΘ = (r +
√
r2 + s)2, with

r =

√
m2

aEa

ma +mB
cosΘ and

s =
mBQ+ Ea(mB −ma)

ma +mB

(5.1)

where Ea is the initial energy of the protons (12 MeV), ma is the mass of the proton,
and mB is the mass of the 12C nuclei. For inelastic scattering the protons excite the
12C nuclei into their first 2+ state at an energy of 4.439 MeV. This is the Q value for
this reaction, whereas for elastic scattering Q is zero. As can be seen in the above
equations, the energy of the protons also depends on the scattering angle Θ. How to
determine the angles for all of the pixels is described in sec. 5.4. Using the angles it
is possible to calculate the expected energies of the scattered protons, for each pixel.
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Notice though, that this energy depends on the initial energy of the protons, Ea.
Just like the α particles, the protons will lose energy in the dead layer on top of the
detectors. Thus the energy loss in the dead layers has to be determined, in order
to know the energy deposited in the detectors. As mentioned before in Sec. 5.5,
the effective thickness of the dead layers only depends on the nominal thickness, t,
and the Θ angle for the wall. However, for the box the effective thickness depends
on where the detectors are placed in relation to the target. The top and bottom
telescopes, labelled number six and eight in Fig. 5.4, are parallel to the x-axis. The
effective thickness is in this case given by

teff =
t

sinΘcosφ

The detectors placed to the left and right of the target, labelled telescopes five and
seven in Fig. 5.4 are parallel to the y axis which yield an effective thickness of

teff =
t

sinΘsinφ
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Figure 5.7: The range of protons in silicon (black curve) and aluminium (red curve)
calculated by SRIM. By using the energy of the protons, EΘ, their range can be
determined.

The range of particles in matter depends on their energy. The range is not a linear
function of energy. This is illustrated in Fig. 5.7 which shows the range of protons
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Figure 5.8: Schematic illustration (thicknesses not to scale) of the process to calcu-
late the energy deposited in the ∆E and E detectors. The grey area corresponds to
the silicon detectors and the green area, the dead layers. See text for further details.

in silicon (aluminium) in the black (red) curve, calculated by using SRIM [33]. The
energy loss of charged particles in matter can be described by the reduced Bethe-
Block equation

dE

dx
∝ mZ2

E

where m is the mass of the incoming particle, Z2 its proton number, E is its energy
and dE its energy loss over the distance dx. Over the same distance, a particle with
low energy will loose more energy than an identical particle with more energy. The
low energy particle will thus have a shorter range than the high energy particle.
When calculating how much energy is supposed to be deposited in the ∆E and E
detectors this non linear behaviour has to be taken into account.
The energy loss of protons in thin layers of silicon and aluminium is very similar,
which also can be seen in Fig. 5.7. To simplify the calculations the energy losses by
protons in silicon and aluminium were assumed to be indistinguishable. This allows
the approximation that the ∆E detector is thicker, i.e., to its actual thickness of
some 65 µm an additional 1 µm silicon was added. This corresponds to the thick-
nesses of the aluminium dead layers on the front and back side of the ∆E detectors
as well as the front of the E detectors.

The following notations are illustrated in Fig. 5.8, showing the different layers a
particle has to pass in order to hit the E detector. In Fig. 5.8 the silicon detectors
are marked in grey and the dead layers are given in green. The energy of the protons
depends on the scattering angle Θ and the range, R1, of the protons corresponding
to this energy, EΘ, was calculated using the function obtained from SRIM

R1 = 5.29 · 10−6E2
Θ + 1.77 · 10−2EΘ − 4.17 (5.2)

which gives the range in the unit µm if the energy is in MeV. To determine how
much of EΘ is deposited in the ∆E detector and the dead layers, the length R∆E of
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these has to be subtracted from R1 according to

R2 = R1 − R∆E

The range R2 (cf. Fig. 5.8) corresponds to a certain energy, EE , deposited in the E
detector, which is calculated by using the function obtained from SRIM. Thus the
energy deposited in the dead layers and the ∆E detector is

E∆E = EΘ − EE

Since only the total energy of the protons, EΘ, is of interest, it does not matter that
the energy loss in the dead layers is contained within the expression of E∆E . This
energy is used in the calibration, and hence the energy loss of protons in the dead
layers is ’baked’ into the calibration coefficients for the ∆E detector. The charged
particles detected during the experiment must, of course, be treated in the same
way. Once these energies have been determined, it is also possible to reconstruct
the initial energy, Ea, of the protons detected in a certain pixel at angle Θ.

5.6.2 The beam energy

In the theoretical calculation to determine the proton energy, it is necessary to know
the initial energy of the protons, Ea as defined in Eq. 5.1. A problem relating to
this was discovered while investigating the energy deposited in the E detectors by
protons using only the α calibration. The protons had more energy than they were
expected to have.
During the experiment, the proton beam energy, Ea, was stated to be 12.00 MeV.
However, after discussions with the beam operators at the ATLAS facility at Ar-
gonne National Laboratory, who provided the beam, it was concluded that the beam
energy is never very accurately known. Accordingly the beam energy was by the
beam operators given the uncertainty (12.0±0.3) MeV.
However it is possible to determine the beam energy by measuring the energy of

the protons only using the α calibration. For instance, the spectra displayed in the
turquoise curve in Fig. 5.9 corresponds to the fourth strip in the upper left E wall
for the proton calibration. The two peaks correspond to energies of 11.427 MeV and
6.750 MeV for the elastically and inelastically scattered proton respectively.
To know which beam energy these measured values correspond to the following steps
were taken

1. Determine the thickness of the ∆E detector

The nominal thickness given for the upper left ∆E detector in the wall is 62 µm.
The Θ angle for this strip is 23.7◦, giving an effective thickness of

teff =
62

cos 23.7◦
µm = 67.7µm

2. Calculate the energy of the protons

The protons have energies, EΘ, given by Eq. 5.1. If the beam energy, Ea, is 12.00
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Figure 5.9: Spectrum for strip number 4 (13) in the turquoise (black) curve, in
the upper left E detector in the wall, for the proton calibration. Notice the large
difference in the background level for the two strips.

MeV the energies of the protons are 11.83 MeV and 7.38 MeV.

3. Energy in the E detector

The range of the protons in the silicon detectors is calculated by using the for-
mula 5.2 obtained from SRIM with the theoretical proton energies. Thus the range
of the elastically scattered proton becomes

R1 = (5.29 · 10−6 · 11.832 + 1.77 · 10−2 · 11.83 − 4.17) µm = 946.1 µm

and for the inelastically scattered proton it becomes

R
′

1 = (5.29 · 10−6 · 7.382 + 1.77 · 10−2 · 7.38 − 4.17) µm = 414.7 µm

This is the full range of the protons corresponding to their energy. To know how
much of this energy which is deposited in the E detector, the range, R2 has to be
determined.

R2 = R1 − R∆E

where R∆E includes the thickness of the ∆E detector, the dead layers of the ∆E
detector and the front dead layer on top of the E detector. In this example we hence
have

R2 = 946.1 µm − 67.7 µm = 878.4 µm

and

R
′

2 = 414.7 µm − 67.7 µm = 347.0 µm
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To calculate the energy corresponding to this range, Eq. 5.2 can be solved to reveal
the energy, EE

EE =
−1.77 · 10−2 ±

√
(1.77 · 10−2)2 + 4 · 5.29 · 10−6(878.4 − 4.17)

2 · 5.29 · 10−6
= 11.350 MeV

and

E
′

E =
−1.77 · 10−2 ±

√
(1.77 · 10−2)2 + 4 · 5.29 · 10−6(347.0 − 4.17)

2 · 5.29 · 10−6
= 6.645 MeV

which is the energy deposited in the E detector for the ranges R2 and R
′

2.
Comparing these theoretically calculated values to the experimental values of 11.427
MeV and 6.750 MeV, we do not see a good agreement. However, if we assume that
Ea is 12.07 MeV, and perform the above calculations again, we achieve an energy
deposited in the E detector of 11.421 MeV and 6.720 MeV. For this initial energy
of the protons the deviation between the calculated and the theoretical values are 6
keV respectively 30 keV, which were the smallest deviations found. Therefore the
beam energy, Ea is determined to be 12.07 MeV for the present experiment, and the
theoretical proton energies needed to calibrate the detectors are calculated using the
new beam energy of 12.07 MeV.

5.6.3 Spectra

The above mentioned steering problems of the beam during the calibration runs
caused serious problems. The count rate in the strips, especially in the ones close to
the beam center (x=y=0) was very high, causing significant pile-up. Pile-up occurs
when two (or more) events are being processed by the detector and the associated
electronics at practically the same time.

Two typical proton calibration spectra are shown in Fig. 5.9, where the turquoise
(black) curve corresponds to strip number 4 (13) in the upper left E detector of the
wall. Clearly strip 4 is heavily influenced by pile-up and it is difficult to unambigu-
ously identify the peak corresponding to the inelastically scattered proton. For strip
13 (in the black curve) the general background is much lower, but so is the statistics
in the peaks as well.
To obtain cleaner spectra for the calibration, matrices over the energy loss in the
∆E detector versus the energy in the E detector were created. These are shown
in panels (a)-(c) of Fig. 5.10 for the upper left telescope in the wall. The effect of
pile up is clearly seen in panel (a). The expected appearance is a matrix with two
discrete points (as the protons have discrete energies) but clearly the measured data
displays something quite different. Panel (a) holds the total collected statistics dur-
ing the proton calibration runs. It is very noisy and it is difficult to clearly identify
the two proton peaks. The corresponding matrix for one selected pixel is shown
in panel (b), where the noise is substantially reduced. For the calibration, further
conditions were placed on the energy signals; the energy deposited in the ∆E and
E detectors had to full-fill the conditions;

0.3 MeV ≤ E∆E ≤ 1.1 MeV and

5.5 MeV ≤ EE
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Figure 5.10: Panel (a) through (c) show ∆E versus E matrices for the proton cali-
bration. Panel (a) includes the entire collected statistics for the upper left telescope
in the wall. Panel (b) displays the collected statistics for one selected pixel in the
wall, and panel (c) is the result of imposing some energy conditions on panel (b).
The projection of the matrices in panel (b) and (c) onto the ∆E axis is shown in
panel (d) in black respectively turquoise curves.
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The result of imposing these conditions is shown in panel (c), which reveals two
proton points.
In panel (d) the spectra obtained by projecting the matrices onto the ∆E-axis for
panel (b) (black curve) and panel (c) (turquoise curve) are presented. The calibra-
tion was performed by using the energy of the elastic peak (i.e. the peak with lower
energy) obtained from the turquoise curve, because this spectrum is cleaner. The
black curve also contains a few more peaks, corresponding to random coincidences
between noise and the protons.
To avoid using the strips with large pile up for the calibration, pixels with good
and unambiguous statistics were used. The energy deposited in these pixels were
assumed to represent the energy deposited in the strip. The proton calibration is
also performed per strip, i.e. one pixel per strip is sufficient to calibrate it.

5.6.4 Calibration

The proton energy deposited in the E - detectors was measured. It corresponds to a
certain theoretically calculated energy. By utilising this, the coefficients for a linear
calibration curve can be obtained. For the E detectors which had no α calibration
(cf. Sec. 5.5), the coefficients to a two point linear curve were derived. The green
curve in Fig. 5.11 is an example of a calibration curve for a strip in a wall detector.
Also in Fig. 5.11 the α calibration for the same strip in the wall is displayed in the
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Figure 5.11: Calibration curves for the ∆E detector, using one proton and two α
points in the black curve, and in the red curve only two α points are used. The
calibration curves for the E detector is shown in green (two proton points) and
blue (two α points). The need for a non-linear calibration for the ∆E detectors is
apparent when comparing the black and red dotted curves.
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blue curve, evidently the two calibrations are practically identical.
The energy deposited in the ∆E detectors for the protons was also measured. Typi-
cally the protons leave 0.4 to 0.9 MeV in the ∆E detector. Therefore the calibration
for the ∆E detector must be able to describe the entire energy region from low en-
ergy (∼0.4 MeV) to high energy (∼8 MeV). The calibration for the ∆E detectors
employs both α calibration points and a proton calibration point. Only one of the
proton peaks was used, as the statistics for the inelastically scattered proton is lower
than for the elastically scattered proton. This is seen in panel (d) of Fig. 5.10. With
the measured values and the theoretical energies, the coefficients to a second degree
polynomial curve were derived. These translate the measured channels, C, into en-
ergy, E, according to E = ai · C2 + bi · C + di.

The calibration curve for one of the ∆E strips is shown in black in Fig. 5.11.
This calibration curve is only slightly parabolic. Nonetheless compared to a linear
calibration only using the α calibration points shown in the red dotted line, a clear
difference exists between the two curves, especially at low energies. Consequently, it
reinforces the need to include the proton point in the calibration of the ∆E detectors
for low energies.

5.6.5 Absorber foils

To protect the detectors from being struck by heavy high energy particles during the
experiment, absorber foils are placed in front of the ∆E detectors. The absorber foils
consisted of tantalum and aluminium of varying thicknesses, illustrated in Fig. 5.12,
for the box in panel (a), the wall in panel (b) and a photo of the wall absorbers in
panel (c). Any particle, which enters the detectors during the experiment, first has

µm

µm8,3       Ta

µm+4       Al

µm+2       Al

µm12.5       Ta(a) (c)(b)

+8.3       Ta

Figure 5.12: The absorber foils for (a) the box and (b) wall, displaying the varying
materials and thicknesses in µm. In panel (c) the wall absorber foil is displayed.

to pass through the absorber foils. Naturally some of the particle energy is deposited
in the absorbers. To determine how much energy is lost by the particle, yet another
proton calibration was performed but with the absorber foils in place. This proton
calibration was identical to the proton calibration described in Sec. 5.6. Since the
proton energy in both calibrations was the same, the decrease in energy deposited
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in the detector is directly proportional to the thickness of the foils.
The procedure is described in the following numerical example:
For a pixel in the lower right corner of the upper left telescope of the wall, the
energy deposited in the detector before (after) the absorbers were inserted was 12.080
(11.490) MeV. Using the SRIM formula Eq. 5.2, as above, their range was determined
as 266.03 (244.92) µm. The difference in range is (266.03 - 244.92) µm = 21.11 µm,
i.e., the effective thickness of the foil. This pixel is placed at an angle of Θ=13.2◦,
giving a nominal thickness of 21.11/cos 13.2◦ = 20.6 µm. This value is indeed very
similar to the value given by the manufacturer of 20.8 µm, as seen in panel (b) of
Fig. 5.12. When the absorbers are placed in front of the ∆E detectors, the energy
deposited in the detectors is not the total energy of the protons. Naturally this is
due to the energy loss in the absorber foils. To determine the proper energy of the
protons, the energy loss in the foils has to be compensated for. This correction will
depend on where the pixel is placed, how thick the absorber in front of it is. Again
using the example of the upper left wall in the telescope; the absorber foil is placed
at z = 62 mm, from the target, thus it needs to be projected on to the position of
the ∆E detectors. In Fig. 5.12 panel (b) the radius, r, of the 20.8 µm thick area is
3.25 cm, but seen at the ∆E detector position, its actual size is 3.57 cm, according
to

reff = 68 · 3.25

62
cm = 3.57 cm

Thus all protons impinging on the detectors within this area have to pass 20.8 µm
of tantalum. Using the energy deposited in the ∆E and E detectors it is possible
to calculate the range, R1 of the protons as described in Sec. 5.6.1. By adding the
angle dependent thickness of the absorbers foil to R1, the energy of the protons
before hitting the absorber foils can be determined. By performing this correction it
is possible to treat the energy deposited in the detector as if there were no absorbers
in front of them.

5.7 Evaluation of the calibration

To study the accuracy of the calibration the initial energy, Ea of the protons was
calculated by using the measured energies deposited in the detectors, i.e., EΘ as
defined in Eq. 5.1, properly compensated for the energy loss in the absorber foils.
In Fig. 5.13 the pixels of the upper left telescope in the wall are shown on the y -
axis versus Ea on the x - axis.

As expected two discrete points can be seen for each pixel. The pixel ordering in
this picture follows the notation introduced in Fig. 5.5. The first pixels, number one
to 16, are placed in the first row of the upper part of the telescope. The subsequent
pixels are placed lower and lower in the telescope, with increasing pixel number. As
is seen in Fig. 5.13 the background increases a lot for pixels with high numbers. For
these pixels a second high energy peak appears. Perhaps its origin is pile-up. The
beam energy, Ea, which now should be constant for all pixels displays a peculiar
behaviour. It decreases for pixels far out to the side of the detector. It can be ex-
plained if the size and/or the angle of the incoming beam spot is slightly misplaced.
Implying that the pixels angles are not correct, as the origin of the coordinate sys-
tem used to determine the pixels is the beam spot on the target. To achieve the
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Figure 5.13: The beam energy of the protons for all pixels in the upper left telescope
of the wall.
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Figure 5.14: Modified beam energy of the protons for all pixels in the upper left
telescope of the wall. See text for details.



5.7. EVALUATION OF THE CALIBRATION 67

E
 (

10
0 

ke
V

 / 
C

h
an

n
el

)

E (100 keV / Channel)

∆

(c) (d)

(a) (b)

p

α
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in the E detector. In panel (a) events with multiplicity one are shown, i.e., one hit
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Figure 5.16: γ-ray spectrum of 55Co obtained from experiment 3 using multiplicity
one in LuSiA. Some of the previously known transitions in 55Co are marked out.
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correct behaviour for the beam energy a correction was introduced. The correction
adds a constant number to beam energy, shifting it to the correct position. The
result is displayed in Fig. 5.14 where the beam energy is displayed for each pixel. It
is with this last correction nearly constant for all pixels.

At the moment of writing (November 2006) it is not possible to fully evaluate the
calibration. If Fig. 5.14 had display two straight lines, the calibration would have
been optimum, clearly the actual calibration is less than optimum. Currently the
complete sort program for experiment 3 (c.f Sec. 3.3) to handle all of the signals from
the detectors is being constructed. Some very preliminary data from experiment 3
is shown in Fig. 5.15, where the energy deposited in the ∆E detector versus the
energy deposited in the E detector is shown. Panel (a) displays the spectra obtained
if only one hit is demanded in both detectors. Panel (b) is obtained with one hit
in the ∆E and two hits in E, panel (c) displays events with two hits in ∆E and
one in E. Panel (d) have double multiplicity in both detectors. In panel (a), the
protons and α-particles are clearly seen. Requiring multiplicity one in both the ∆E
and E detectors, a γ-ray spectrum corresponding to a certain reaction channel can
be created. In Fig. 5.16 the γ-ray spectrum from the 2α1p channel is displayed,
corresponding to the residual nucleus 55Co, and in the figure some of the previously
known γ-rays are marked out.
The first goal of LuSiA to achieve a good particle identification is evidently meet. If
the angular distribution and energy of the prompt particles can obtained from the
present experiment remains to be seen.



Chapter 6

Conclusions and Outlook

An extended experimental level scheme of the doubly magic nucleus 56Ni has been
created. A comparison between the experimental results and large-scale shell-model
calculations was performed. The two interactions used in the model gave very differ-
ent results. The GXPF1 interaction can accurately reproduce the level energies in
56Ni as well as its electromagnetic decay pattern, with one notable exception: it can
surprisingly not reproduce the feeding and decay pattern of the yrast and yrare 8+

states. The reason for this was traced to the wave functions of the involved levels,
which inhibits the experimentally observed decay pattern. The KB3G interaction
on the other hand, cannot predict the level energies or the electromagnetic decay
properties of 56Ni very well, except for some low energy yrast states. The Coulomb
interaction was included in both calculations. This increased the accuracy of cal-
culation using KB3G, whereas it decreased using GXPF1. The reason behind this
behaviour requires future theoretical efforts. Pure particle-hole excitations were also
studied, revealing the presence of single particle and rotational states in the exper-
imental level scheme of 56Ni.
The ground state of 56Ni seems to be made up of 15 nucleons in the lowest possible
state with one additional nucleon ’excited’, already in the ground state. Possibly
this is an indication that the 1f7/2 orbital below N = Z = 28 shell gap and the up-
per fp orbitals are not well separated in energy, i.e. that 56Ni is not a good doubly
magic nucleus. This is also indicated by that the excitation energy of the first 2+

state is rather low compared to other doubly magic nuclei.

Almost all doubly magic nuclei have a 3− state at relatively low excitation en-
ergy. This state corresponds to an octupole (pear shaped) vibration of the nucleus.
However, in 56Ni no indications of it were found in the present analysis. It is in-
tended to perform an experiment specifically aimed at finding this missing level, as
it would give an opportunity to study the competition between single-particle states
and a collective excitation.

One of the most complex fusion-evaporation reaction experiments has been per-
formed using a state-of-the-art charged particle detector, LuSiA. The calibration of
LuSiA has proven to be very sensitive to small previously neglected aspects. It is
also very easily affected by the beam energy, where a difference of 0.07 MeV between
the given and the real value for the beam energy caused the initial calibration to
fail.
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The data handling of experiment 3 (c.f. Sec. 3.3) is in the process of being finalised.
It is expected that the subsequent data analysis will provide unprecedented infor-
mation on the angular distribution and energy of particles emitted in the prompt
particle decay.

The doubly magic nucleus 56Ni will be studied in the data set taken from exper-
iment 3 in order to further extend the experimental level scheme which allows for a
greater test of the shell model calculations. Another nucleus to be studied is 58Ni.
A total of 9 prompt proton decays and two prompt α decays have been suggested
for 58Ni [34]. The angular distribution of the prompt protons and α particles, could
could lead to a refined knowledge of single-particle orbitals inside deformed poten-
tials and possibly the time it takes for the particle to tunnel through the nuclear
potential barrier, i.e., the tunnelling time. This is of great scientific interest, not
’only’ in nuclear physics but for physics and the natural sciences in general.
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