
EMSE-515-F05-08

EMSE-515

Fall 2005

F. Ernst

Rutherford Backscattering 
Spectrometry

1



EMSE-515-F05-08

2

Bohr’s Model of an Atom

• existence of central core established by single collision,
large-angle scattering of alpha particles (4He2+)

→ basis of Rutherford back-scattering spectrometry (RBS)
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Principle of RBS

• exposed specimen surface to beam of (light) MeV particles

• elastic collisions with (heavy) atoms of target

→ Coulomb scattering in a central-force field

• can be described by classical mechanics

• but: specimen will eventually stop beam particles

→ sufficient penetration of the target requires beam particles
with kinetic energy in the MeV range

→ accelerator!
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NEC 5SDH Accelerator
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NEC 5SDH Accelerator

• 1.7 MV tandem pelletron

• 3.4 MeV protons

• 5.1 MeV alpha particles

• N ions with energies in excess of 7.0 MeV

• detectors

◦ Si surface barrier detector

◦ NaI(Ti) scintillator

◦ liquid nitrogen-cooled Si(Li) detector
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NEC 5SDH Accelerator

• detectors enable detection of

◦ scattered ions

◦ characteristic gamma rays

◦ characteristic x-rays

• can be used for the following experimental techniques:

◦ RBS

◦ PIXE (particle induced X-ray emission)

◦ NRA (nuclear reaction analysis)

◦ sample temperatures from 77 to 1000 K
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Detection of Scattered Particles

• semiconductor nuclear particle detector

• resolve rate and kinetic energy of scattered particles

• most systems use a surface-barrier, solid state detector

◦ Schottky-barrier diode

◦ reverse-biased

◦ incident particle generates electron–hole pairs

◦ collected to electrodes

◦ voltage pulse, proportional to particle energy

◦ collect counts in voltage bins of multichannel analyzer
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Surface Barrier, Solid State Detector
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Surface Barrier, Solid State Detector
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Resulting Spectrum Properties

• statistics of electron-hole pair generation

• noise in output signal

• limited energy resolution

• typical energy resolution: 10 . . . 20 keV

• backscattering analysis with 2.0 MeV 4He particles can re-
solve isotopes up to about mass 40 (clorine isotopes, for
example)

• mass resolution decreases with increasing atomic mass of
the target

• example: 181Ta and 201Hg cannot be distinguished



EMSE-515-F05-08

11

Experimental Setup for RBS
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Experimental Setup for RBS

• beam of mono-energetic particles (4He)

• in vacuum

• backscattering

→ energy transfer to (stationary) target atoms

→ primary particle looses kinetic energy

• amount depends on masses of incident particle and target
atom

• energy loss provides “signature” of target atoms
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Characteristics of RBS

• multi-element depth concentration profiles

• fast, non-destructive analysis (no sample preparation or
sputtering required)

• matrix independent (unaffected by chemical bonding
states)

• quantitative without standards

• high precision (typically ±3 %

• high sensitivity

◦ e. g. 1011 Au/cm2 on Si

◦ depends on Z and sample composition
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Characteristics of RBS

• depth range: between 0 and 1 mm

• depth resolution ≈2 nm near the surface

• spatial definition:

◦ beam spot size 0.5 . . .2.0 mm

◦ map or raster option to 7 cm×7 cm
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Typical Applications of RBS

• absolute thickness of films, coatings, and surface layers
(in atoms/cm2)

• surface/interface contaminant detection
(oxide layers, adsorbates, etc.)

• interdiffusion kinetics of thin films (metals, silicides, etc.)

• elemental composition of complex materials
(phase identification, alloy films, oxides, ceramics, etc.)

• quantitative dopant profiles in semiconductors

• process control monitoring

◦ composition

◦ contaminant control



EMSE-515-F05-08

16

Kinematics of Elastic Collisions
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Kinematics of Elastic Collisions

• RBS: elastic Coulomb scattering

→ calculate energy transfer in the framework of classical me-
chanics

• applying the conservation principle of energy and momen-
tum

• energy:
M1
2
v2 = M1

2
v2

1 +
M2
2
v2

2

v: velocity of beam particle before collision;
v1: velocity of beam particle after collision;
v2: velocity of target particle after collision;
M1: mass of beam particle;
M2: mass of target particle.
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Kinematics of Elastic Collisions

• momentum:

p = p1 + p2

!⇒ M1v = M1v1 +M2v2

p: momentum of beam particle before collision;
p1: momentum of beam particle after collision;
p2: momentum of target particle after collision.

• components parallel and normal to the axis (direction of
the incident beam):

M1v = M1v1 Cos[θ]+M2v2 Cos[θ]

∧ 0 = M1v1 Sin[θ]+M2v2 Sin[θ]
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Kinematics of Elastic Collisions

• for the ratio of particle velocities, these expressions yield

v1
v
=
±
√
M2

2 −M2
1 Sin[θ]2 +M1 Cos[θ]
M1 +M2

,

where the plus sign holds for

M1 < M2

• ratio of the projectile energies for M1 < M2 is known as
“kinematic factor” KM2
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Kinematic Factor

• KM for a scattering angle θ = 170◦ as a function of the
target mass M2 for different beam particles:
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Kinematic Factor

• the sensitivity for small differences ∆M2 becomes a maxi-
mum for θ = 180◦

⇒ θ = 180◦ is the preferred position for the detector

→ “back-scattering”

• in practice (to accommodate the detector size):
detector at θ ≈ 180◦
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Example of RBS Spectra

• ≈1 ML of different noble metals:

◦ 63, 65Cu

◦ 107, 109Ag

◦ 197Au

◦ θ = 170◦

• 2.5 MeV 4He ions
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Example of RBS Spectra
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Discussion

• RBS can detect less than one monolayer of heavy elements!

• peaks representing the elements

◦ well separated

◦ easy to identify

• determination of absolute coverage?

→ requires knowledge on absolute cross-section (see below)

• limits of mass resolution ↔ separation of isotope peaks
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Discussion

• Cu:

◦ 63Cu (K = 0.777) and 65Cu (K = 0.783)

◦ energy difference ∆E1 = 17 keV for 2.5 MeV 4

→ somewhat larger than detector resolution (≈15 keV)

⇒ Cu isotopes are resolved

• Ag:

◦ 107Ag and 109Ag

◦ ∆E1 = 6 keV

→ smaller than energy resolution of detector

◦ Ag isotopes not resolved



EMSE-515-F05-08

26

Scattering Cross Section

• probability of scattering is equal to fraction of sample area
“blocked” by scatters

• important concept for scat-
tering problems:

scattering cross section

→ effective “ target area”
presented by each scatter
(atom)
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Scattering Cross Section

• scattering cross section can be considered for specific
kinds of scattering events, for example:

◦ elastic scattering → σel

◦ inelastic scattering → σinel

• thin samples:

◦ target areas of individual scatters do not overlap

→ N scatterers block area N · σ
◦ fraction of “rays” removed from incident beam:

Nσ
A

= Nσx
Ax

= ρσx

x: sample thickness; ρ ≡ N/Ax: number density of scatterers.
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Impact Parameter

• scattering is generally anisotropic

• depends on impact parameter b
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Differential Scattering Cross-Section

• scattering angle θ decreases with increasing b

• for increasing b, θ → 0 (forward scattering)

• angular distribution of scattered particles?

• important concept:

differential scattering cross section:

dσ
dΩ
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View Along Incident Beam Direction
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Differential Scattering Cross Section

• interpretation of differential scattering cross section:

◦ piece of area dσ offered by the scatterer for scattering
into a particular increment dΩ in solid angle

◦ dσ varies with the location of dΩ, characterized by the
scattering angle θ:

dσ
dΩ

= dσ
dΩ
[θ]

• relation between increment in scattering angle θ and incre-
ment in solid angle:

dΩ = 2π Sin[θ]dθ
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Differential Scattering Cross-Section

• relation between increment in scattering angle θ and incre-
ment in solid angle:

dΩ = 2π Sin[θ]dθ

• in backscattering spectrometry, the detector solid angle
ΩD is small – typically < 10−2 sterad

• therefore, one often uses an average differential cross-
section:

σ[θ] = 1
ΩD

∫

ΩD

dσ
dΩ

dΩ,

where σ is usually called “scattering cross-section”
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Differential Scattering Cross-Section
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Quantification

• consider thin target of thickness t with N atoms/cm3, thus

Ns = Nt

target atoms per unit area

• total number of incident particles: Q

• number of particles detected by the detector positioned at
scattering angle θ: QD[θ]

→ to infer Ns from QD, one needs to know σ[θ], the “scatter-
ing cross-section:”

QD[θ] = σ[θ] ·ΩD ·Q ·Ns
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Quantification

• σ[θ] can be calculated from the force that acts during the
collision

• since high-energy particles penetrate up to the core of
the target atom, this force mainly corresponds to an un-
screened Coulomb repulsion between the two positively
charged nuclei

• one-body formulation of this problem:

◦ scattering by a central force

◦ conservation of kinetic energy

◦ impact parameter b

◦ rotational symmetry
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Quantification

• particles with impact parameters between b and b+db are
deflected into an annular region spanned by scattering an-
gles between θ and θ + dθ
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Quantification

• the area of this region is

dΩ = 2π Sin[θ]dθ

• recall definition of the scattering cross-section:

dσ = σ[θ]dΩ

→ annular area enclosing scattering angles [θ, θ + dθ] is re-
lated to annular area

dσ = 2πbdb

by

2πbdb = −σ[θ] · 2π Sin[θ]dθ
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Central Force Scattering

• geometry of RBS:
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Central Force Scattering

• central force!

⇒ scattered particle travels on a hyperbolic trajectory

• elastic scattering by a central force ⇒ conservation of

◦ kinetic energy

◦ magnitude of the momentum (direction generally
changes)

→ total change in momentum,

∆p ≡ p1 −p,

is along the z′ axis



EMSE-515-F05-08

40

Conservation of Momentum



EMSE-515-F05-08

Central Force Scattering

• for this geometry,

∆p/2
M1v

= Sin
[θ

2

]
⇐⇒ ∆p = 2M1v Sin

[θ
2

]

• Newton’s second law:

F = ṗ ⇒ dp = Fdt

• the force F is the Coulomb repulsion between the scattered
particle and the target particle:

F = 1
4πε0

Z1Z2e2

r2

ε0: electric constant; Z1,2: atomic numbers; e: electron charge;
r : distance.
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Central Force Scattering

• since the angular momentum is conserved under a central
force,

M1vb = M1r2dφ
dt

⇒ dt
dφ

= r2

vb

• inserting this result and the expression for the Coulomb
force into the above equation for ∆p yields

∆p = 1
4πε0

Z1Z2e2

r2

∫
Cos[φ] r

2

vb
dφ

= 1
4πε0

Z1Z2e2

vb

∫
Cos[φ]dφ
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Central Force Scattering

• this implies

∆p = 1
4πε0

Z1Z2e2

vb
(Sin[φ2]− Sin[φ1])

• according to the geometry of the scattering process,

φ1 = −φ0, φ2 = +φ0, 2φ0 + θ = π

• it follows that

Sin[φ2]− Sin[φ1] = 2 Sin
[π

2
− θ

2

]

• combining this with the above equation for ∆p yields

∆p = 1
4πε0

Z1Z2e2

vb

(
2 Sin

[π
2
− θ

2

])
= 2

4πε0

Z1Z2e2

vb
Cos

[θ
2

]
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Central Force Scattering

• this yields a relationship between the impact parameter b
and the scattering angle θ:

b = 1
4πε0

Z1Z2e2

M1v2 Cot
[θ

2

]
= 1

4πε0

Z1Z2e2

2E
Cot

[θ
2

]

• using the previous equation

2πbdb = −σ[θ] · 2π Sin[θ]dθ,

the scattering cross-section can be expressed as

σ[θ] = − b
Sin[θ]

db
dθ
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Central Force Scattering

• inserting the geometrical relationships

Sin[θ] = 2 Sin
[θ

2

]
Cos

[θ
2

]

d Cot
[θ

2

]
= − dθ

2 Sin[θ/2]2

yields the cross-section originally derived by Rutherford:

σ[θ] =
(

1
4πε0

Z1Z2e2

4E

)2
1

Sin[θ/2]4
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Central Force Scattering

• the closest approach d of the scattered particle to the tar-
get particle is given by equating its kinetic energy to its
potential energy at a distance d away from the core of the
target particle:

d = 1
4πε0

Z1Z2e2

E

• inserting this into the Rutherford expression for the scat-
tering cross-section yields

σ[θ] = (d/4)2

Sin[θ/2]4

• for θ = π this yields

σ[π] = (d/4)2
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Central Force Scattering

• for 2 MeV He ions (Z1 = 2 incident on Ag (Z2 = 47) this
yields a closest particle–scatterer distance of

d = 6.8 · 10−5 nm

⇒ much (!) smaller than the Bohr radius
(radius of a hydrogen atom, 5 · 10−2 nm)

• the cross-section for scattering to θ = π is

σ[θ] = 2.98 · 10−10 nm2 = 2.89 · 10−28 m2 ≡ 2.89 barn

1 barn := 10−28 m2
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Conclusion

• conclusions for materials scientists:

The use of an unscreened cross-section is justified.

RBS is a powerful, quantitative method.

• conclusion for physicists and philosophers:

THE WORLD IS “EMPTY!”


