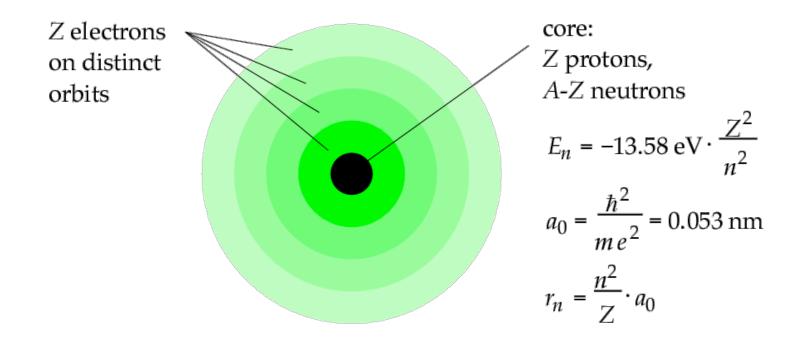
Rutherford Backscattering Spectrometry

EMSE-515 Fall 2005 **F. Ernst** EMSE-515-F05-08

Bohr's Model of an Atom



- existence of central *core* established by single collision, large-angle scattering of alpha particles (${}^{4}\text{He}{}^{2+}$)
- → basis of Rutherford back-scattering spectrometry (RBS)

Principle of RBS

- exposed specimen surface to beam of (light) MeV particles
- *elastic* collisions with (heavy) atoms of target
- → Coulomb scattering in a central-force field
- can be described by classical mechanics
- but: specimen will eventually stop beam particles
- → sufficient penetration of the target requires beam particles with kinetic energy in the MeV range
- \rightarrow accelerator!

EMSE-515-F05-08

NEC 5SDH Accelerator

NEC 5SDH Accelerator

- 1.7 MV tandem pelletron
- 3.4 MeV protons
- 5.1 MeV alpha particles
- N ions with energies in excess of 7.0 MeV
- detectors
 - Si surface barrier detector
 - Nal(Ti) scintillator
 - liquid nitrogen-cooled Si(Li) detector

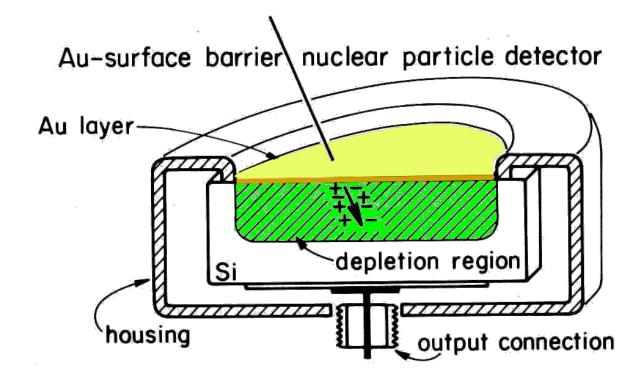
NEC 5SDH Accelerator

- detectors enable detection of
 - scattered ions
 - characteristic gamma rays
 - characteristic x-rays
- can be used for the following experimental techniques:
 - RBS
 - PIXE (particle induced X-ray emission)
 - NRA (nuclear reaction analysis)
 - sample temperatures from 77 to 1000 K

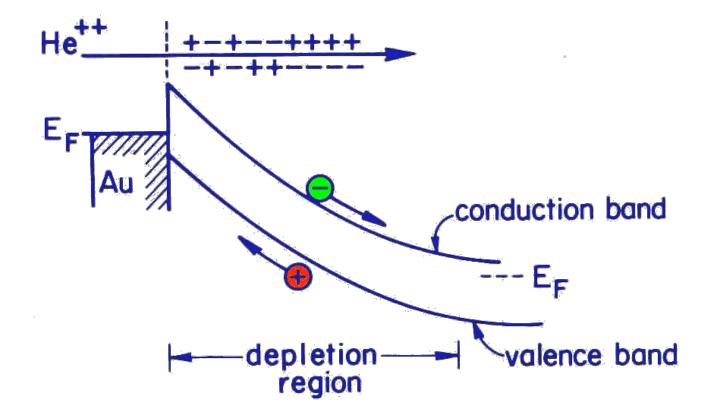
Detection of Scattered Particles

- semiconductor nuclear particle detector
- resolve rate and kinetic energy of scattered particles
- most systems use a *surface-barrier*, solid state detector
 - Schottky-barrier diode
 - reverse-biased
 - incident particle generates electron-hole pairs
 - collected to electrodes
 - voltage pulse, proportional to particle energy
 - collect counts in voltage bins of multichannel analyzer

Surface Barrier, Solid State Detector



Surface Barrier, Solid State Detector

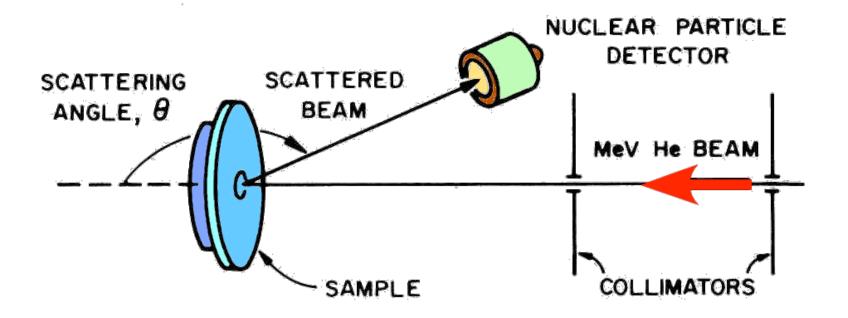


Resulting Spectrum Properties

- statistics of electron-hole pair generation
- noise in output signal
- limited energy resolution
- typical energy resolution: 10...20 keV
- backscattering analysis with 2.0 MeV ⁴He particles can resolve isotopes up to about mass 40 (clorine isotopes, for example)
- mass resolution decreases with increasing atomic mass of the target
- example: ¹⁸¹Ta and ²⁰¹Hg cannot be distinguished

EMSE-515-F05-08

Experimental Setup for RBS



Experimental Setup for RBS

- beam of mono-energetic particles (⁴He)
- in vacuum
- backscattering
 - \rightarrow energy transfer to (stationary) target atoms
 - → primary particle looses kinetic energy
- amount depends on masses of incident particle and target atom
- energy loss provides "signature" of target atoms

Characteristics of RBS

- multi-element depth concentration profiles
- fast, non-destructive analysis (no sample preparation or sputtering required)
- matrix independent (unaffected by chemical bonding states)
- quantitative without standards
- high precision (typically $\pm 3\%$
- high sensitivity
 - $\circ\,$ e.g. $10^{11}\,$ Au/cm 2 on Si
 - \circ depends on Z and sample composition

Characteristics of RBS

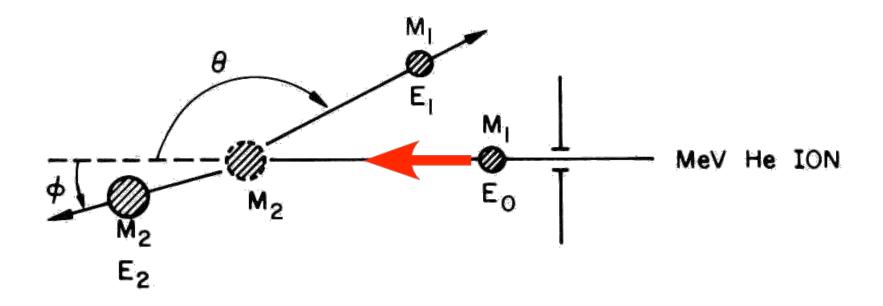
- depth range: between 0 and 1 mm
- depth resolution $\approx 2 \text{ nm}$ near the surface
- spatial definition:
 - beam spot size 0.5...2.0 mm
 - map or raster option to $7 \text{ cm} \times 7 \text{ cm}$

Typical Applications of RBS

- absolute thickness of films, coatings, and surface layers (in atoms/cm²)
- surface/interface contaminant detection (oxide layers, adsorbates, etc.)
- interdiffusion kinetics of thin films (metals, silicides, etc.)
- elemental composition of complex materials (phase identification, alloy films, oxides, ceramics, etc.)
- quantitative dopant profiles in semiconductors
- process control monitoring
 - composition
 - contaminant control

EMSE-515-F05-08

Kinematics of Elastic Collisions



Kinematics of Elastic Collisions

- RBS: elastic Coulomb scattering
- → calculate energy transfer in the framework of classical mechanics
 - applying the conservation principle of energy and momentum
 - energy:

$$\frac{M_1}{2}v^2 = \frac{M_1}{2}v_1^2 + \frac{M_2}{2}v_2^2$$

v: velocity of beam particle before collision; v_1 : velocity of beam particle after collision; v_2 : velocity of target particle after collision; M_1 : mass of beam particle; M_2 : mass of target particle.

Kinematics of Elastic Collisions

• momentum:

$$p = p_1 + p_2$$
$$\implies M_1 v = M_1 v_1 + M_2 v_2$$

- *p*: momentum of beam particle before collision;
- p_1 : momentum of beam particle after collision;
- p_2 : momentum of target particle after collision.
- components parallel and normal to the axis (direction of the incident beam):

 $M_1 v = M_1 v_1 \operatorname{Cos}[\theta] + M_2 v_2 \operatorname{Cos}[\theta]$ $\wedge \quad 0 = M_1 v_1 \operatorname{Sin}[\theta] + M_2 v_2 \operatorname{Sin}[\theta]$

Kinematics of Elastic Collisions

• for the ratio of particle velocities, these expressions yield

$$\frac{v_1}{v} = \frac{\pm \sqrt{M_2^2 - M_1^2 \operatorname{Sin}[\theta]^2} + M_1 \operatorname{Cos}[\theta]}{M_1 + M_2},$$

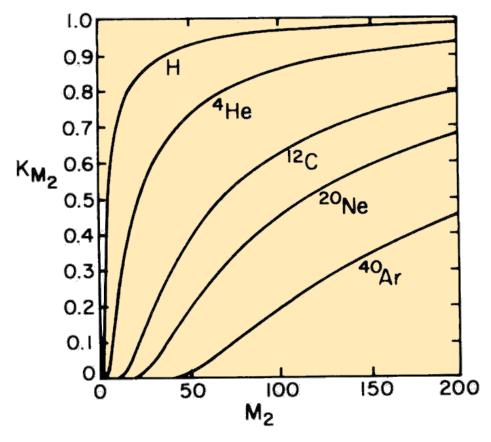
where the plus sign holds for

$$M_1 < M_2$$

• ratio of the projectile energies for $M_1 < M_2$ is known as "kinematic factor" K_{M_2}

Kinematic Factor

• K_M for a scattering angle $\theta = 170^\circ$ as a function of the target mass M_2 for different beam particles:



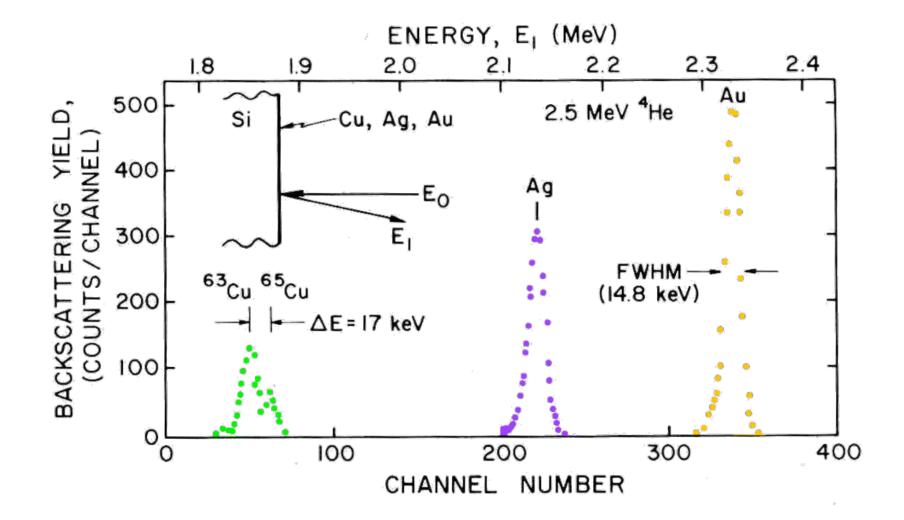
Kinematic Factor

- the sensitivity for small differences ΔM_2 becomes a maximum for $\theta = 180^{\circ}$
- $\Rightarrow \theta = 180^{\circ}$ is the preferred position for the detector
- → "back-scattering"
- in practice (to accommodate the detector size): detector at $\theta \approx 180^{\circ}$

Example of RBS Spectra

- ≈ 1 ML of different noble metals:
 - ∘ ^{63, 65}Cu
 - 。^{107, 109}Ag
 - \circ ¹⁹⁷Au
 - $\circ \ \theta = 170^{\circ}$
- $2.5 \text{ MeV} ^4 \text{He ions}$

Example of RBS Spectra



Discussion

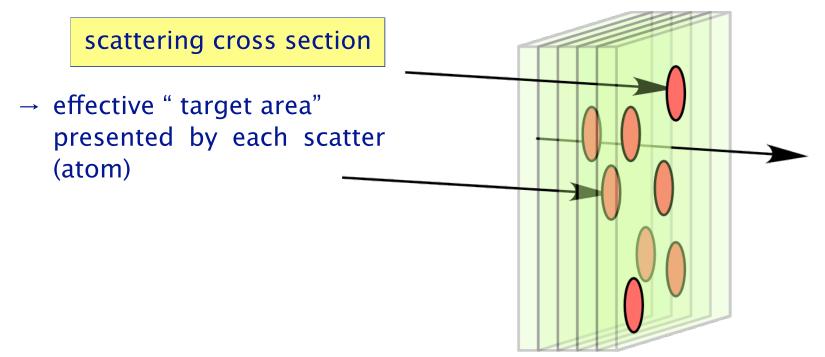
- RBS can detect less than one monolayer of heavy elements!
- peaks representing the elements
 - well separated
 - easy to identify
- determination of *absolute* coverage?
- → requires knowledge on absolute cross-section (see below)
 - limits of mass resolution ↔ separation of isotope peaks

Discussion

- Cu:
 - 63 Cu (*K* = 0.777) and 65 Cu (*K* = 0.783)
 - energy difference $\Delta E_1 = 17$ keV for 2.5 MeV ⁴
 - → somewhat larger than detector resolution ($\approx 15 \text{ keV}$)
 - \Rightarrow Cu isotopes are resolved
- Ag:
 - $\circ~^{107}\mathrm{Ag}$ and $^{109}\mathrm{Ag}$
 - $\circ \ \Delta E_1 = 6 \, \mathrm{keV}$
 - → *smaller* than energy resolution of detector
 - Ag isotopes *not* resolved

Scattering Cross Section

- probability of scattering is equal to fraction of sample area "blocked" by scatters
- important concept for scattering problems:



Scattering Cross Section

- scattering cross section can be considered for specific kinds of scattering events, for example:
 - \circ elastic scattering $\rightarrow \sigma_{el}$
 - inelastic scattering $\rightarrow \sigma_{\text{inel}}$
- *thin* samples:
 - target areas of individual scatters do not overlap
 - ightarrow N scatterers block area $N \cdot \sigma$
 - fraction of "rays" removed from incident beam:

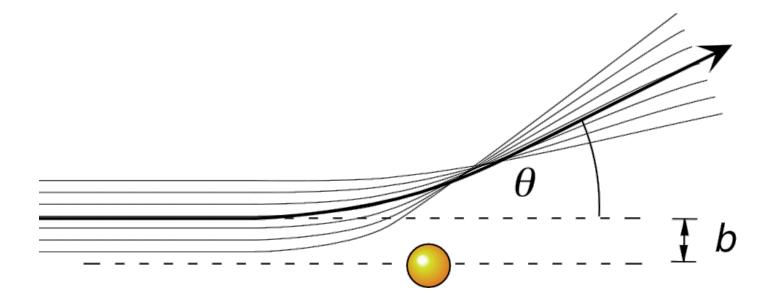
$$\frac{N\sigma}{A} = \frac{N\sigma x}{Ax} = \rho\sigma x$$

x: sample thickness; $\rho \equiv N/Ax$: number density of scatterers.

EMSE-515-F05-08

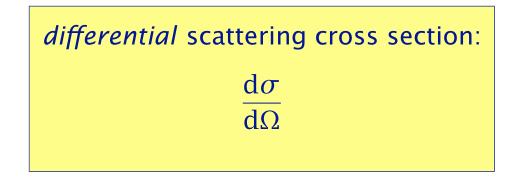
Impact Parameter

- scattering is generally anisotropic
- depends on impact parameter *b*



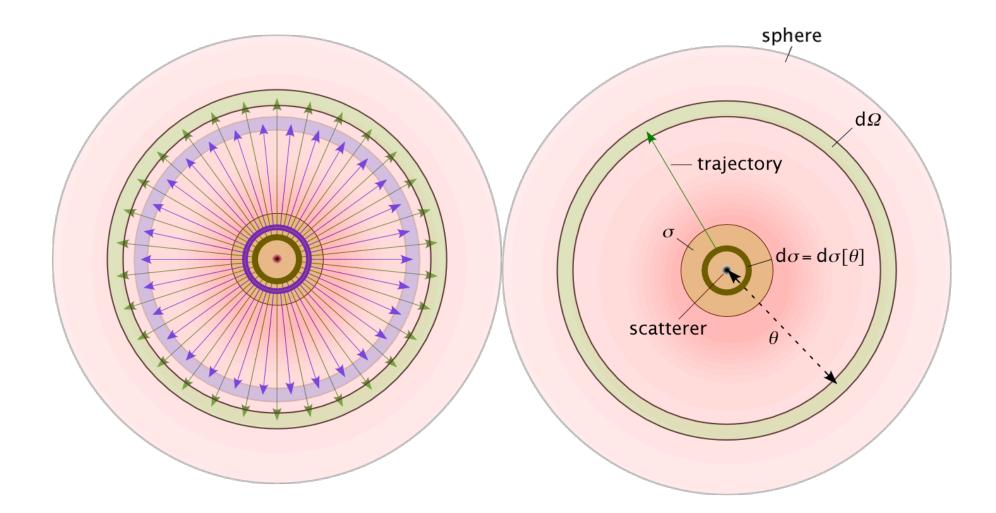
Differential Scattering Cross-Section

- scattering angle θ decreases with increasing b
- for increasing b, $\theta \rightarrow 0$ (forward scattering)
- angular distribution of scattered particles?
- important concept:



EMSE-515-F05-08

View Along Incident Beam Direction



Differential Scattering Cross Section

- interpretation of differential scattering cross section:
 - $\circ\,$ piece of area $d\sigma\,$ offered by the scatterer for scattering into a particular increment $d\Omega$ in solid angle
 - $d\sigma$ varies with the location of $d\Omega$, characterized by the scattering angle θ :

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}[\theta]$$

- relation between increment in scattering angle θ and increment in solid angle:

$$\mathrm{d}\Omega = 2\pi \operatorname{Sin}[\theta] \mathrm{d}\theta$$

Differential Scattering Cross-Section

• relation between increment in scattering angle θ and increment in solid angle:

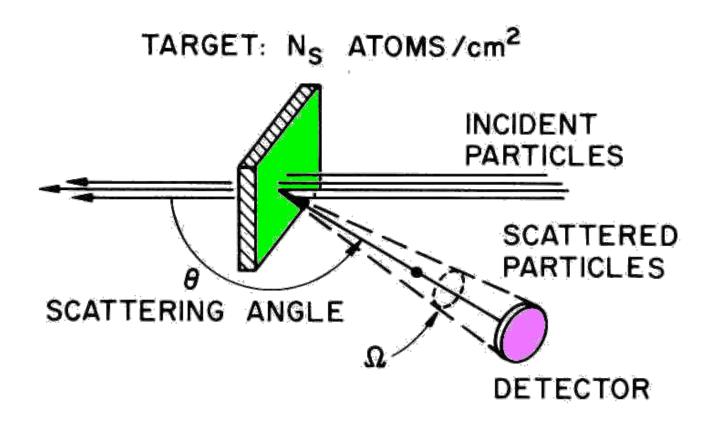
$$\mathrm{d}\Omega = 2\pi \operatorname{Sin}[\theta] \mathrm{d}\theta$$

- in backscattering spectrometry, the detector solid angle ΩD is *small* typically < 10^{-2} sterad
- therefore, one often uses an *average* differential cross-section:

$$\sigma[\theta] = \frac{1}{\Omega_{\rm D}} \int_{\Omega_{\rm D}} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \,\mathrm{d}\Omega,$$

where σ is usually called "scattering cross-section"

Differential Scattering Cross-Section



Quantification

• consider thin target of thickness t with N atoms/cm³, thus

 $N_{\rm S} = Nt$

target atoms per unit area

- total number of incident particles: Q
- number of particles detected by the detector positioned at scattering angle θ : $Q_{\rm D}[\theta]$
- → to infer $N_{\rm S}$ from $Q_{\rm D}$, one needs to know $\sigma[\theta]$, the "scattering cross-section:"

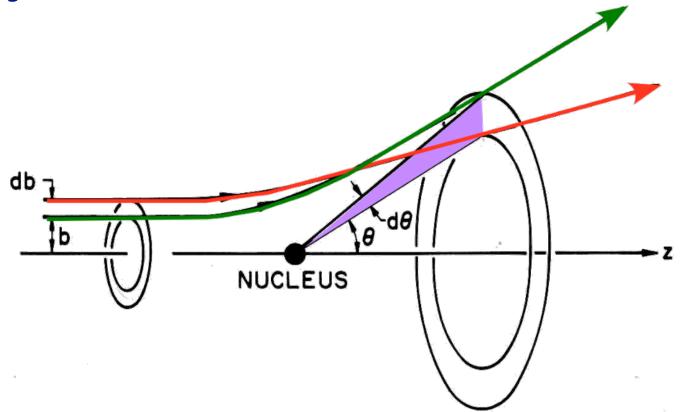
 $Q_{\rm D}[\theta] = \sigma[\theta] \cdot \Omega_{\rm D} \cdot Q \cdot N_{\rm S}$

Quantification

- $\sigma[\theta]$ can be calculated from the force that acts during the collision
- since high-energy particles penetrate up to the core of the target atom, this force mainly corresponds to an unscreened Coulomb repulsion between the two positively charged nuclei
- one-body formulation of this problem:
 - scattering by a central force
 - conservation of kinetic energy
 - \circ impact parameter b
 - rotational symmetry

Quantification

• particles with impact parameters between b and b + db are deflected into an annular region spanned by scattering angles between θ and $\theta + d\theta$



Quantification

• the area of this region is

 $d\Omega = 2\pi \operatorname{Sin}[\theta] d\theta$

• recall definition of the scattering cross-section:

 $\mathrm{d}\sigma = \sigma[\theta]\mathrm{d}\Omega$

→ annular area enclosing scattering angles $[\theta, \theta + d\theta]$ is related to annular area

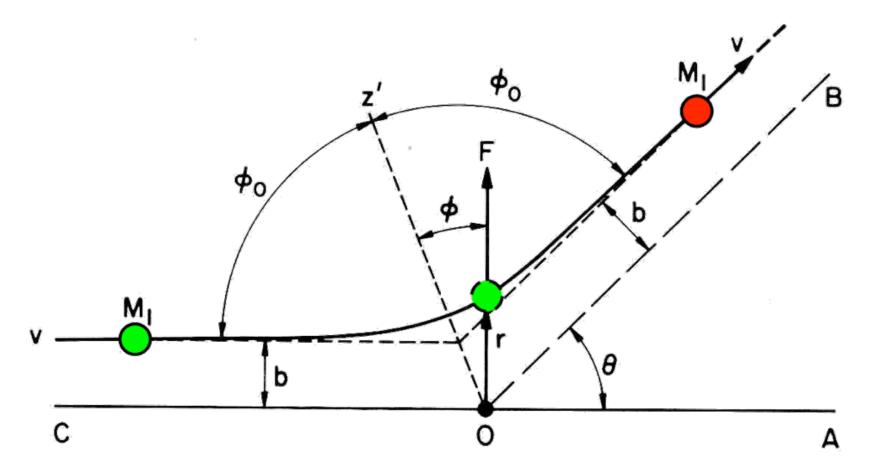
 $\mathrm{d}\sigma = 2\pi b\mathrm{d}b$

by

$$2\pi b db = -\sigma[\theta] \cdot 2\pi \operatorname{Sin}[\theta] d\theta$$

Central Force Scattering

• geometry of RBS:

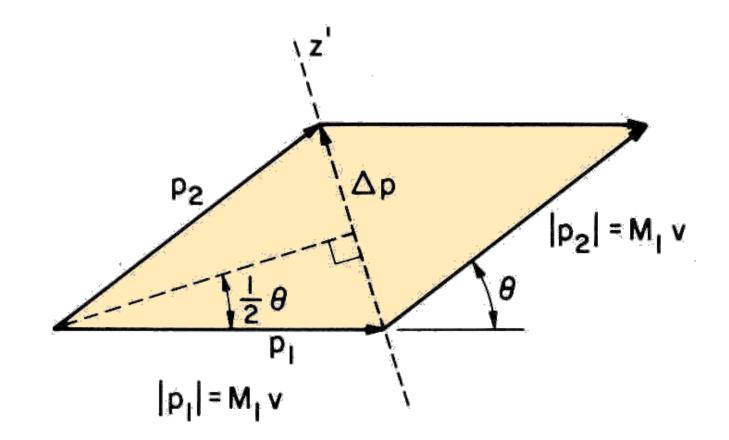


- central force!
- ⇒ scattered particle travels on a *hyperbolic* trajectory
- elastic scattering by a central force ⇒ conservation of
 - kinetic energy
 - magnitude of the momentum (direction generally changes)
- \rightarrow total change in momentum,

$$\Delta \boldsymbol{p} \equiv \boldsymbol{p}_1 - \boldsymbol{p},$$

is along the z' axis

Conservation of Momentum



• for this geometry,

$$\frac{\Delta p/2}{M_1 v} = \operatorname{Sin}\left[\frac{\theta}{2}\right] \quad \Longleftrightarrow \quad \Delta p = 2M_1 v \operatorname{Sin}\left[\frac{\theta}{2}\right]$$

• Newton's second law:

$$F = \dot{p} \Rightarrow dp = Fdt$$

• the force *F* is the Coulomb repulsion between the scattered particle and the target particle:

$$F = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{r^2}$$

 ε_0 : electric constant; $Z_{1,2}$: atomic numbers; e: electron charge; r: distance.

since the angular momentum is conserved under a central force,

$$M_1 v b = M_1 r^2 \frac{\mathrm{d}\phi}{\mathrm{d}t}$$
$$\Rightarrow \frac{\mathrm{d}t}{\mathrm{d}\phi} = \frac{r^2}{v b}$$

• inserting this result and the expression for the Coulomb force into the above equation for Δp yields

$$\Delta p = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{r^2} \int \operatorname{Cos}[\phi] \frac{r^2}{vb} d\phi$$
$$= \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{vb} \int \operatorname{Cos}[\phi] d\phi$$

• this implies

$$\Delta p = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{v b} \left(\operatorname{Sin}[\phi_2] - \operatorname{Sin}[\phi_1] \right)$$

according to the geometry of the scattering process,

$$\phi_1 = -\phi_0, \quad \phi_2 = +\phi_0, \quad 2\phi_0 + \theta = \pi$$

• it follows that

$$\operatorname{Sin}[\phi_2] - \operatorname{Sin}[\phi_1] = 2\operatorname{Sin}\left[\frac{\pi}{2} - \frac{\theta}{2}\right]$$

• combining this with the above equation for Δp yields

$$\Delta p = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{v b} \left(2 \operatorname{Sin}\left[\frac{\pi}{2} - \frac{\theta}{2}\right] \right) = \frac{2}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{v b} \operatorname{Cos}\left[\frac{\theta}{2}\right]$$

• this yields a relationship between the impact parameter b and the scattering angle θ :

$$b = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{M_1 v^2} \operatorname{Cot}\left[\frac{\theta}{2}\right] = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{2E} \operatorname{Cot}\left[\frac{\theta}{2}\right]$$

• using the previous equation

 $2\pi b db = -\sigma[\theta] \cdot 2\pi \operatorname{Sin}[\theta] d\theta,$

the scattering cross-section can be expressed as

$$\sigma[\theta] = -\frac{b}{\sin[\theta]} \frac{\mathrm{d}b}{\mathrm{d}\theta}$$

Central Force Scattering

• inserting the geometrical relationships

$$\operatorname{Sin}[\theta] = 2 \operatorname{Sin}\left[\frac{\theta}{2}\right] \operatorname{Cos}\left[\frac{\theta}{2}\right]$$
$$\operatorname{d}\operatorname{Cot}\left[\frac{\theta}{2}\right] = -\frac{\operatorname{d}\theta}{2 \operatorname{Sin}[\theta/2]^2}$$

yields the cross-section originally derived by Rutherford:

$$\sigma[\theta] = \left(\frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{4E}\right)^2 \frac{1}{\mathrm{Sin}[\theta/2]^4}$$

• the closest approach *d* of the scattered particle to the target particle is given by equating its kinetic energy to its potential energy at a distance *d* away from the core of the target particle:

$$d = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{E}$$

 inserting this into the Rutherford expression for the scattering cross-section yields

$$\sigma[\theta] = \frac{(d/4)^2}{\sin[\theta/2]^4}$$

• for $\theta = \pi$ this yields

$$\sigma[\pi] = (d/4)^2$$

• for 2 MeV He ions ($Z_1 = 2$ incident on Ag ($Z_2 = 47$) this yields a closest particle-scatterer distance of

$$d = 6.8 \cdot 10^{-5} \,\mathrm{nm}$$

- ⇒ much (!) smaller than the Bohr radius (radius of a hydrogen atom, $5 \cdot 10^{-2}$ nm)
 - the cross-section for scattering to $\theta = \pi$ is $\sigma[\theta] = 2.98 \cdot 10^{-10} \text{ nm}^2 = 2.89 \cdot 10 - 28 \text{ m}^2 \equiv 2.89 \text{ barn}$

 $1 \text{ barn} := 10^{-28} \text{ m}^2$

Conclusion

• conclusions for materials scientists:

The use of an unscreened cross-section is justified.

RBS is a powerful, quantitative method.

• conclusion for physicists and philosophers:

THE WORLD IS "EMPTY!"